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ABSTRACT 

In this paper we prove the full multip]icativity (in both variables) of 
gamma factors for generic representations of SO2~+1 xGLn. These 
gamma factors are initially defined as proportionality factors of local 
functional equations, derived from a corresponding global theory of cer- 
tain Rankin-Selberg integrals which interpolate standard L-functions for 

SO2t+1 xGL~. 

O. Introduction, preliminaries and notation 

In [S1,2] we defined local gamma factors V(r x % s, ¢) for a pair of generic rep- 

resentations ~r and ~- of SO2~+1(F) and GLn(F)  respectively, over a local field 

F.  Here s is a complex variable and ¢ is a nontrivial additive character of F.  

Our main task in this paper is to prove that the gamma factor is multiplicative 

in the first variable, when F is nonarchimedean. Namely, if 7r is induced from a 

maximal parabolic subgroup, with Levi part isomorphic to GLk (F) x SO2t,+1(F) 

(k + / '  = t),  and from generic representations a and r '  of GLk (F) and S02t,+ f (F)  

respectively, then 

T H E O R E M  1:  

(0.1) 7(7r × r , s , ¢ )  = w~(-1)kT(a x r , s , ¢ ) 7 ( ~  × r, s , ¢ ) 7 ( r '  x r, s ,¢) .  

The first two gamma factors are ones for GLk × GLn (see [J.PS.S]). These 

gamma factors are identical to the corresponding local coefficients for GLk x GLn, 
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defined by Shahidi (we use this fact in the paper). This was proved by Shahidi 

in [Sh3]. We proved (0.1) in case F is archimedean (see [$2]) and in case F is 

nonarchimedean and g < n (see [S1]). To complete the proof of (0.1) in case 

l > n, we prove a partial multiplicativity of the gamma factor in the second 

variable. More precisely, assume that 

. .GL.(F) 
T ---- tn f lp~ , ._ ,  / t  ® "r' (normalized induction) 

where P '  is the standard parabolic subgroup of GLn(F)  of type (1, n - 1), 1,n--1 
# is a quasi-character of F* and T' is a generic representation of GLn- I (F ) .  We 

assume, for simplicity of future calculations, that # ( - 1 )  = 1. Then 

T H E O R E M  2: 

(0.2) e(~ x T, s, ¢) = ~(~ x , ,  s, ¢)~(~ x ~', s, ¢).  

Using global arguments, we will conclude from Theorems 1 and 2 the 

multiplicativity of the gamma factor in the second variable as well, and this 

will conclude the full multiplicativity of the gamma factor. 

THEOREM 3: Assume that r is induced from a maximal parabolic subgroup, 

whose Levi part  is isomorphic to GLnl x GLn2, and from the irreducible (generic) 

representation T1 ® T2. Then 

~(~ ® T, s, ¢) = ~(~ ® T1, s, ¢)~(~ ® ~2, s, ¢). 

These multiplicativity properties show that our gamma factor is identical with 

the Shahidi local coefficient on SO2~+1 x GL, .  The multiplicativity of the Shahidi 

local coefficient is immediate from its definition and a similar property of inter- 

twining operators, while the proof of this property of our gamma factor is long 

and very technical. However, our gamma factors appear in the local theory of 

Rankin-Selberg convolutions for SO2e+1 xGLn, which can locate poles of the 

corresponding tensor L-functions which, in turn, play an important role in the 

application of the converse theorem to the proof of existence of a lifting of cuspidal 

generic representations of SO21+1 (A) to automorphic representations of GL2t (/%). 

Let us explain how (0.2) and (0.1), for  / < n, imply (0.1) for ~ _> n. Assume 

that  / >_ n and r is induced from a ® ~' as before. Take t, such that n + t > ~, 

and choose characters # 1 , . . . ,  #t of F* such that  # i ( - 1 )  = 1, i = 1 , . . . ,  t. Define 

~ .GL.+dF) 
= Inop~,..,~,. #I @ ' " @  #t @T. 
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P~ ..... 1,, is the standard parabolic subgroup of GL,+t (F)  of type (1 , . . . ,  1, n). By 

(0.1) (for ~ < n + t), 

(0.3) 7(7r x ~, s, ¢) = w7(--1)kT(a x ~, s, ¢)7(6 x ~, s, ¢)7(Tr' x ~, s, ¢). 

A repeated application of (0.2) yields 

t 
(0.4) 70r' x ~ , s ,¢ )  = [ H T 0 r  ' x # , , s ,¢) ]  T, 8~ t#). 

i=l 

Also the gamma factors for GLk x GLk, are known to be multiplicative [J.PS.S], 

and so 

~(~ × ~, s, ¢)~(~ × ~, s, ¢)  = 
t 

(0.5) [ H ~ ( ~  × . .  s ,¢)~(~ × . , ,~ ,¢) ]~(~  × . ,~ ,¢)~(~  × ~, ~,¢/. 
i=1 

Substitute (0.4), (0.5) in (0.3); then 

3'(7r x F, s, ¢) =wT~(--1)k3'(a x T, S, ¢)3'(& x T, S, ¢)~/(vr' x T, s, ¢). 
t 

(0.6) H ~(~ x ~ ,  s, ¢ )~ (~  x ~ ,  s, ¢)~(~, x ~ ,  ~, ¢).  
i=1 

A repeated application of (0.2) gives 

t 

i=l 

LEMMA: For a quasi-character # o f F * ,  such that #(-1)  = 1, "y(Tr x # , s , ¢ )  is 

multiplicative in 7r. 

Proof." Let m > ~ and let 

Tm,~ = Ind~ L~(F) # ® .." ® #, 

where B is the Borel subgroup of GLm(F). By (0.6), 

~(~ x ~ , . ,  ~, ¢) = [~(~ x ~, ~, ¢ )~(a  x ~, s, ¢)~(~'  x ~, ~, ¢)]m, 

and by (0.7), 

~(~ x ~m,., s, ¢)  = [~(~ x ~, ~, ¢ ) ] " .  
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Thus 

(0.8) [~(~ × ~, ~, ¢ ) F  = [~(~ x ~, s, ¢)~(~ × ~, ~, ¢ ) ~ ( ~ '  x ~, ~, ¢ ) F  

for all m > t. This implies 

(0.9) 7(n × #, s, ¢) -- 7 (a  × #, s, ¢ )7(5  × #, s, ¢)7(7r' × #, s, ¢).  | 

Using (0.9), we can rewrite (0.7) as 

t 

i = l  

(0 .10)  • ~/(Tr × r,  s , ¢ ) .  

Now compare (0.10) with (0.6) to get 

7(7r x T,S,¢) = w~(--1)k~(a x T,S,¢)a(& X T, S, ¢ )a(Tr' x s ,¢) .  

This idea of proving (0.1) in case ~ > n, using (0.2) and (0.1) in case ~ < n, is 

similar to the one in [J.PS.S]. Most of the worl~ of this paper is to prove Theorem 

2. 

Let us show how to prove Theorem 3, based on Theorems 1 and 2 and global 

arguments. 

Proofo£ Theorem 3: Since Theorem 1 gives multiplicativity in the first variable, 

it is enough to prove Theorem 3 for supercuspidal r .  Let 

T : Ind~L~(F) r - ' ' ' '  ,..... 1"1 @ "--® Tr 

where P,~I ..... mr is the standard parabolic subgroup of GL,~(F) of type 

( n l , . . . ,  nr),  nl  + ' "  + n~ = n, and TI , . . . ,  T~ are supercuspidal representations 

of GL,~, ( F ) , . . . ,  GL,~r (F). It suffices to prove that 

~(~® ~,s ,¢)  = f l ~ ( ~  ® ~-. s ,¢).  
i=1 

We can embed ~r (resp. ri) as a local factor of an irreducible, automorphic, cus- 

pidal generic representation ~" (resp. ~)  of S02/+~(A) (resp. GL,~.(A)), where 

A is the ring of adeles of a number field k, such that at a certain place Uo, 

k~ o = F,  r~o = 7r, ~,~o = Ti, and for all other finite places v, ~,  and Ti,~ 

are unramified (i --- 1 , . . . , r ) .  See [Shl, Sect. 4]. Assume first that ~ < n. The 

global Rankin-Selberg integrals for SO2~+1 x G L ,  can be applied for ~ ® ~  where 
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Z = (Zl , . . . ,  Zr) C C r and ~, is the Eisenstein series on GLn(A) induced from 

~1[ det.[zl ® . . .  ® Tr[ det.[zr. The Euler product expansion for the integrals is 

exactly the same as in the case we take a cusp form on GLn(A). The global 
functional equation of the Rankin-Selberg integrals implies that  for i < j and 

Re(zi - zj) >> 0, 

(0.11) ~'(~o ®~,oo,s,¢oo) 1-I ")'(~v ®~z,~,s ,¢,)  = 1. 
v < o o  

(Here and below, we may interpret the infinite product as the finite product 

of local gamma factors over all places where not all data are unramified, times 

the quotient of the corresponding partial L functions at s and at 1 - s.) Here 

9'(~oo ® ~ , ~ ,  s, ¢oo) is the product of ~/(~, ® ~,~, s, ¢~) over all archimedean u. 

Of course, we have, for i = 1 , . . . ,  r, 

(0.12) ~/(K~®'ri,~,s+ z,,¢oo)7(r®~'i,s+zi,¢) 1-[ ~/(rv®~,u,s+ zi,¢v) = 1. 
~'0 
v<oo 

Since, for finite u ~ u0, ~ and ~i,~ are unramified, we have 

(0.13) 3'(~, ® ~,~, s, ¢~) = H ~ ' (~ ® ~i,~, s + zi, ¢~). 
i--1 

From [$2], we have 

(0.14) 7 ( ~  ® ~z,o~, s, ¢ o o ) = f i ? ( ~ ® ~ i , o o , s + z i , ¢ c ¢ ) .  
i----1 

We conclude from (0.11)-(0.14) that (for t < n) 

(0.15) 7 ( r  ® T*,-o, S, ¢) = 1-I ~/(r ® Ti, S + Zi, ¢). 
i=I 

It is clear that  the 1.h.s. of (0.15) is meromorphic in (q-* l , . . . ,  q-~r, q-8) and we 

can substitute z = (0 , . . . ,  0) to get 

r 

(0.16) 7 ( r  ® ~ ' , s , ¢ )=  1-IT(r  ® T,,S,¢). 
i=l 

Now assume that  t >_ n. We repeat the trick we used before. Let #1 , . . . ,  ]~t be, 

say, unramified characters of F*, such that n + t > g, and consider, as before, 
T' = Ind GL"+dF) T1 ® ' ' "  ® rr ® #1 ® ' ' "  ® #t- Then by (0.16), we have 

Pnl  , . . . ,nr,l , . . . ,1 

r t 

(0.17) "~(r®T',S,¢)= yI~/(~®Ti, S,¢) I - I ^ / ( ,® , i ,S ,¢ ) .  
i = 1  i = 1  



516 D. SOUDRY Isr. J. Math. 

By Theorem 2, 

t 

(0.18) ~ (~®~' , s ,¢ )  = ~(~ ® ~, s, ¢) 1-I~(~ ® ~ ,  s, ¢). 
i----1 

From (0.16) and (0.17) we conclude that 

r 

(0.19) 7(7r ® r, s, ¢) = H "r(r ® T,, S, ¢) 
i=1 

for ~ >_ n as well, and hence for all l, n. This completes the proof of Theorem 3. 
| 

The gamma factor is defined as a proportionality factor of a functional equation 

(0.20) -r(~r x r, s, ¢) v(~, A2, 2s - V , ¢ )  A(W' ~,s) = ~(W, ~,s). 

Here W is in the Whittaker model W(~r, ¢) of lr with respect to ¢, ~,8 is a 

section in p~-,~, the representation of SO2,~(F) (split) induced from the Siegel 

parabolic subgroup and the representation 7-®ldet  .I ~-1/2 (normalized induc- 

tion). A is a certain bilinear form and A is obtained from A by applying an 

intertwining operator to ~,~. ~/(~-,A2,2s - 1,¢) is the local coefficient of 

Shahidi [Sh2]. The precise definitions are recalled in Section 1. The proof of 
Theorem 2 is by directly proving (0.11) as an ident i ty  with ~/(~r × ~-, s, ¢) re- 

placed by 7(~r x/~, s, ¢)~/(7r × T', s, ¢). The proof is long and very technical. It 
is in the same spirit as the other cases of multiplicativity mentioned before, but 
the calculations and specific tricks are different. For example, we have to use 

the multiplicativity of the Shahidi local coefficient. There are many places in the 

proof where we have to justify the passage from one local integral to another, 

after performing a formal manipulation. A typical justification consists of es- 

tablishing a domain of absolute convergence of a multiple integral and also of 

a calculation of this integral for a special substitution. We will defer all these 

calculations to the last section of this paper. Finally, let us establish the main 

notation for this paper. 

F -- local nonarchimedean field, with residue field of q elements, prime ideal 

P and ring of integers O. ( 1) 
j ~ =  ." 1 ( m x m m a t r i x ) •  

1 
s o ~  = {g • SL~ I ~gg~g =gm}.  
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Gt = SO2t+t(F). 
H .  = SO2n(F). 

For a • GLt(F), denote a* = Jt ta- tJ l  and a = 1 
a* 

S c_ GL~(F), let B = {bib • B}. 
At = diagonal subgroup of GLt(F). 
Zt = standard maximal unipotent subgroup of GLt(F). 

Nt = standard maximal unipotent subgroup of Gt. 
x • Mp×q(F), let x' = -JqtxJp. 

Q.  = Siegel parabolic subgroup of H. .  Its Levi decomposition is 

Q.  = L .  t~ U~. 

L,,=- {re(a)= ( a  a : )  taEGL'~(F)}" 

I .  I x = x'}" 

U . =  {~(x)= ( ~  I . ) ] x = x ' } .  

. For a subgroup 

For a matrix 

For a subgroup B C GL.(F) ,  we denote re(B) = {m(b) I b • GLn(F)}. 

Vn = standard maximal unipotent subgroup of Hn. V,~ = m(Z.)Un.  

Rk = standard parabolic subgroup of Hn, which preserves a k-dimensional 

isotropic subspace. Levi decomposition: Rk = M(Rk)  D< U(Rk) (Rn = 
Q.). 

P~,n-k = standard parabolic subgroup of GL., of type (k, n -k ) ,  k = 1 , . . . ,  n -1 .  
For g < n, we denote 

r = n - g - 1  

and Q,. denotes the embedding of G~ in H .  given by 

it,. (Gt) = I2r • H .  I eo = e0 , 
D 

where eo is the column vector in F 2~+2, with 1 at its g + 1 coordinate, -1  at its 

g + 2 coordinate and zero elsewhere. For g >_ n, jn,t denotes the embedding of 

H .  in Gt given b y  
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F n -- space of row vectors of dimension n over F.  

F~ = space of column vectors of dimension n over F.  

¢ = a nontrivial character of F .  We let ¢ denote the standard non- 

degenerate character it defines on Zm, Nt, Vn. 
Given a representation 7r, which admits a unique Whit taker model with respect 

to a character 0, we denote this Whit taker model by W(Tr, 0). Induction of 

representations is assumed to be in normalized form. For a representation ~, we 

denote by V~ a vector space realization of the action of 7r. If  Ir has a central 

character, we denote it by w~. 

1. D e f i n i t i o n  o f  -y(cr x r, s, ¢) 

We recall, in this section, the definition of the gamma factor. Let 7r and T be 

irreducible, generic representations of Gt and G L , ( F )  respectively. For s • C, let 

Ts = r ® l  det" I s-1/2, and consider P¢,, = I n d ~  ~-s. We realize r in its Whit taker  

model W(% ¢-1) .  The elements of Vp~., are smooth functions ~¢,s on Hn, which 

take values in W(r ,  ¢ -1 ) ,  and regarding ~r,s as a function on Hn × GLn(F) ,  

~,s(m(a)u(b)h,x) --IdetalS+(n-2)/2~r,s(h, xa), h e Hn, x • GLn(F) .  

Put  ]¢,.o(h) = ~,s(h, In). The integrals defined in [S1], for W E W(~r,¢) and 

~r,s E Vp ....  which are absolutely convergent in a right half plane and are rational 

functions in q-S, are as follows. 

CASE ~ ( n :  

Here 

I 
I /+1 

k 

k 
1 

k 

k 

~+1) ' 
1 

r = n - £ - 1 even, 

i t l  ' r odd, 
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¢~(~) = ¢(vr,~+l). 

z )  H. v M.×(I+I)(F)}, v' E 6 

CASE l >_ n: 

Here 

Let 

: 

y I l -n  

Wn 

n e v e n  

= 1 
( I n )  I2n-2 , n o d d  

I.  1 

and consider the intertwining operator M(w~, ~-¢,8) of p~,8 corresponding to w~. 
In [S1] we also consider .4(W, ~,s) obtained (roughly) from A(W, ~.,~) by applying 
the intertwining operator to ~,~. These are defined as follows 

CASE ~ < n, n even: 

Here bt,n = diag(1, -1 ,  1 - 1 , . . . ,  1, -1).  

CASE g < n, n odd: 

l\Gt (t,.) 

Here 
~*. ,l_~(h, c) = M(w , ,  ~-,~)(h ~" , b[nc* ), 

where 

I n - 1  
1 

W . =  1 , h ~" = w ~ l h w . ,  

In-1 

b l , n=d iag (1 , -1 ,1 , -1 ,  - 1 , 1 ) . (  1l+1 ) 
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r odd, r 2 3, 

, r even, r > 2, 

r = 0, l .  

CASE e 2 n, n even: 

CASE l >  n, n odd: 

Here 

The functional equation asserts that there is a rational function in q-S, 

r(lr x T, s, $), such that 
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for all W E W(~r, ¢) and all holomorphic sections ~,~. 

Let us specify the local coefficient. Consider the Whittaker model of p~,.~ given 

by the following Jacquet integrals: 

(1.1) 

I 
f ~r,s(w~lu(x)h, I)¢(xn_,,,)dx, n even, (0,,,v 0: / 

W¢.,,(h) = f ~.,~(w;1 1 0 h,I)¢(v,~_l)dvdy, n odd, 
1 v' ) 

I,~- i 

In the first case, x varies over {e E M,~(F) I e = e'}, and in the second case, 

y varies over {e C M,,_I(F) I e = e'}. These integrals converge absolutely for 
Re(s) >> 0 and have a holomorphic continuation to the whole plane, which defines 

the Whittaker model for P~-,s with respect to V, and the character 

(1.2) (z x) {¢(z~+z~+...+z,,_~,,,-~,,_~,~), neven, 
0 Z* ~ t/)(Zl2 -~- Z23 ~- " + zn-2,.-1 - z,~-l, ,~ + x,~-l,1), n o d d .  

Let 

Cr-,1-s = M ( w . ,  &s). 

This is a section in the representation induced from T* ®[det  .I 1/2-s to H,~. The 

induction is from the parabolic subgroup Q= if n is even, and from the parabolic 

subgroup w,(Qnwn ~ if n is odd. T*(m) = T(m*). Denote this representation by 

P~.,1-~. As for pr,s, the following integrals define the Whittaker model of fi~',l-~ 

with respect to the character (1.2), 

f ~-. ~_~(wnu(x)h,b~)¢(x,~_~,l)dX, n even, 
W~. ,_ (h) = f (,.,t_~(w,~u(x)h,b;,,~)¢-l(xn_~,~)dx, n odd. 

The Shahidi local coefficient "/(r, A 2, 2s - 1, ¢) is defined through the functional 

equation 

(1.3) "y(T, A 2, 2s - 1, ¢)W~,.,,_~ (I) -- W~,,, (I) 

and we define "f(r x T, S, ¢) by 

",,('.,r x "r, s, ¢) 
(1.4) r ( ~  x ~, s, ¢ )  = ~(~, h2, 2s - 1, ¢ )  
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T . G L .  (F) 2. T w o  rea l iza t ions  o f  P~,s for T = mu e, # ® •' 
1 , n - - I  

Let # be a quasicharacter of F* and T' an admissible, finitely generated rep- 
resentation of GLn-t  (F), such that T' admits a unique Whittaker model (thus 
~/(r × T', S, ¢)  and "y(T', A 2, s, ¢) are defined). We think of the elements of Vr as 

smooth function f(g; b) on GL, (F)  × GL~_t(F),  such that 

(2.1) 

f ( ( 1  v ) I , -1  g; b) = f(g; b), 

f ( ( a 0  0c)g;b)-lal'n-t)/21detclt/2 #(a)f(g;bc); a E F ' ,  c e G L n - l ( F ) .  

The function m ~-~ f(g; m) lies in W(T', ¢-1).  In a similar way, we consider the 
elements of Vp.,. as smooth functions on H ,  × GL,~(F) × G L,~_I(F) F(h ,r ,m) ,  
which satisfy 

F(uh, r,b) = F(h,r,b),  u E U n ,  

(2.2) F(m(a)h,r ,b)  = F(h, ra, b), a e GL,(F) ,  

\(0 Vc / ~ r, b) = #(a)la[8+n-3./21 det clS+(n-a)/2F( h, r, bc). F(  h, 

The function b ~ F(h, r, b) lies in W(T', ¢-1).  We have the isomorphism 

(2.3) Pr,, ~ Ind~'  (#8 ® ,or,,s) 

where 
#s(t) = #(t)ltl s-112 

(p~,,~ is defined on H,~-I similar to p~,~ on H~.) We realize the elements of the 
r.h.s, of (2.3) as smooth functions ¢(h,h',b) on H,~ x Hn-1 x GLn- t (F) ,  such 

that 

(2.4) 

¢(yh, h', b) = ¢(h, h', b), y C U(R1), 

¢ ( h~ = 

x E F*, h~o E H,_ l ,  

¢(h, uh', b) = ¢(h, h', b), u E U(Qn-1) =- U, - t ,  

¢(h,m(a)h' ,b) = IdetalS+("-3)/2¢(h,h',ba), a e G L , - I ( F ) .  

The function b ~-~ ¢(h, h', b) lies in W(r' ,  ¢-1).  
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respectively, is given by 

(2.5) 

GAMMA FACTORS FOR SO2t+l xGLn 

in terms of F and ¢, which satisfy (2.2) 

¢ ~  F¢, where 

F¢(h, r, b) = ¢(m(r)h, 12,,-2, b). 

Now let us compose F4 with the Whittaker functional on T, 

fF. (I~-1 (2.6) qo¢ (h, r) -- Fc~(h, wl,n 
--1 

For k < n, we denote 
/ 

Wk'n ~- I Xn-k 

~ ) r, In-1)¢(z,,-1)dz. 

523 

and (2.4) 

LEMMA 2.1: There is a positive number (o, which depends on T' and # only, 
such that the integral (2.6) converges absolutely for Re(() >_ (o, all ¢ and all s. 

To lighten our notation we do not denote ¢¢,,z,~,¢ but rather just ¢. Finally, 

define 

(2.7) f~(h) = ~o¢(h, In). 

Note that  ~ is a ~¢,8 and f¢ is an f~¢,, in the notation of Section 1. Now we are 

ready to substitute ~¢ for ~¢,8 in A(W, ~.~,~). 

3. P r o o f  of  T h e o r e m  2 in case r = n -  ~ -  1 >_ 1 

We prove directly the identity 

7 ( r  x #, s + (, ¢)7(~r x r ' ,  s - (, ¢) A(W, ~ , )  = .4(W, ~0¢) (3.1) × 

in case r > 1. 

The factor 7(r'  x I~, s - ~) is the gamma factor for GL,_I  x GL1, which also 

equals the corresponding local coefficient of Shahidi. 

The integral (2.6) might not converge. To get convergence, we replace #(x) by 

#(x)lx[¢ and r '(g) by ~-'(g)ldetgl -~ for Re(() large enough. Indeed, we have 

the following lemma whose proof is that of the analogous result for the similar 

intertwining integral. 
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a. DIRECT SUBSTITUTION OF ~ ¢  IN A(W,~¢). T h i s  r e su l t s  in 

(3.2) ~ fl~,.it,. (g ), 12n-2,  In-1)~b ( zn-1) ¢a (5)dzd~dg. 

LEMMA 3.1: The integral (3.2) converges absolutely as a triple integral in a 
domain of the form 

(3.3) A _< Re(C) _< Re(s) + B, 

where the constants A, B depend only on ~r, r' and #. 

The lemma is proved in Section 6.a. 

b. LEMMA 3.2: We have, in the domain (3.3), (1 ) 
v' 1 

(3.4) m(wl,.)flt,., xQ,.-l(g), 1.-1) ¢(vn-1)¢a(~)d(v, ~, g). 

Here Ca is adapted to ~(t,n--1). 

Proof: By a simple change of variables, we may replace m (In--1 

• ~(,o-~ c) in i~.211~n t~e domain I~.~ll. ~rito ~-- ~'~", w"oro 

~+1 r - 1  1 

\ 

o o o ~ } 1  ) v2 u2 0 r 1 

0 v~ 0 } e + l  

and 
~-bl r--1 1 

0 0 u i } r - 1 .  
0 0 v~ } t + l  
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We have 

-, ,  -1 [ u'~ m(wl,.)z re(w1,.) =~ ~ o'1 

V2 ?~2 ) 
0 v~ , 
0 0 oo) 

0 0 , 

Vl ~1 

(I,~_1 z )  _1 ( 1 )  
Wl,n 1 Wl'n ~ Z In_ 1 ' (1 ) 

(3.5) m(wl,n)Q,n(g)m(wl,n) -1 = Q,n-l(9) • 
1 

Using (3.5), (2.4) (and the fact that/3e,, commutes with Q,n(9)), we get (3.4) 

from (3.2). Note that if r > 1 then the conjugation of Ira-2 by 
v' 1 (1 ) 

Q,n-l(g) does not affect ¢(vn-1). If r = 1, we have ~ = 5", U = 
1 

14n and ¢(zn-1)¢~(5) becomes ¢(vn-1 -vn). This character is preserved by (1 ) 
Q,,-l(g) ( n -  g -  1 = 1). | 

1 

The integral (3.4) converges absolutely in the domain (3.3). If we consider its 

d-~dg integration (on Ng\Gt × ~(O~-1)) first, we recognize a local integral for 

G~ × GL, , - I (F)  and 7r × T ~. (There is a missing translation by ~t,,~-l,) 

C. APPLYING THE FUNCTIONAL EQUATION FOR 7r × v t. A formal application 
of this functional equation to the d(~, g) integration in (3.4) gives 

(3.6) 

7 ( r  × T ' , s - ¢ ,  ¢) A ( W , ~ )  = IF2 iN W(g) f.~ ~/(T', A 2, 2(s - ~) - 1, ¢) . - 2  t \ a t  ( t , . - , )  ( (1 , )  ) 
¢~ v I2n-2 m(wl,n)N,n,'Za~,n-lQ,n-l(g),In-1 

v t 1 

• ¢(vn_1)¢ (-1)"-1 (Z)d-~dgdv. 

Let us first explain the notation in (3.6). Put, for h • H , ,  

Ch(h',b) = ¢(h,h',b), h' • H,_I, b • GLn_I(F),  
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Ch lies in VpT,.o_¢. Then 

¢~(h,h',b) = { M(wn-l'¢h)(h''b*t,"-lb*)' n odd, 
M(wn-1, Ch)(h ~"- ' ,  b~,n_lb* ), n even; 

{ I2~-2, n odd, 
W n ~  1 Olt'n-i l]e,n-lm(~t,n-1)1~t,n_l, n e v e n .  

See Section 1 for the notation. Now let us explain how to interpret (3.6). In 
Section 6.b we prove 

LEMMA 3.3: The integral (3.6) converges absolutely (as a multiple integral) in 
a domain of the form 

(3.7) A _ Re(s) <__ Re(C) + B, 
N 

where A, B are constants which depend only on 7r, 7 -~ and #. 

The domains (3.3) and (3.7) might be disjoint. We follow the same reasoning 
as in [S1, Sect. 11]. The integral (3.6), which we denote by B(W, ~¢), has a 
meromorphic continuation to the whole plane and is a rational function in q-8 
(fix if). (This follows from [$1, 8.4] since the integral (3.6) clearly satisfies the 
equivariance property (1.3.2) of [$1].) By [S1, 8.3], B(W, ~ )  is proportional 
to A(W, ~ )  by a meromorphic function of s (and actually of ff as well.) More 
precisely, we have 

4 r w  
7(r ' ,  A 2, 2(s - ~) - 1, ¢) - ' " '  ~¢) = B(W, ~¢) 

where c(r,  r ' ,  x, ¢)  is rational in q-X. To find c, it is enough to compute A(W, ~o¢) 
and B(W, qa¢) for a special substitution of W and ¢. This is shown in Section 
6.c and we, of course, get 

LEMMA 3.4: 
c(~ ,  r ' ,  s - ¢, ¢ )  = 7 ( ~  × r ' ,  s - ¢, ¢ ) .  

d. UNFOLDING B(W, qo¢) BACK. We unfold B(W, ~o¢) "back" from (3.6) to 

an integral similar to (3.2)• This we do in the domain (3.7), where the rational 
function B(W, ~0¢) is represented by the convergent integral (3.6). 

LEMMA 3.5: We have, in the domain (3.7), 

B(W,~°~)= fN,\a W(g) f~.,.) 
(3.8) 

• ¢(~,,_~)¢(, -w-~ (~ )d (~ ,~ ,  g). 
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Here 
¢(h,h',b) = { ¢~(h,h',b), 

¢~ (h'~, h', b), 
h E H,~, h'  E Hn-1 ,  b E G L , _ I ( F )  and 

Proof'. 
reversing the steps which led from (3.2) to (3.4). 

have 

n odd, 
n even, 

~l,n : m ( W l , n ) - I  Ot~,n_ 1 (m(wl ,n )~e ,n ) "" ,  n even. 
1 

If  n is odd, then ~ , n - 1  -- 12n--2 and (3.8) is obtained from (3.6) by 

Assume that  n is even. We 

{dr~-- 1 
O~l,n_ 1 = 

0 1 

L-2 
0 1 
1 0 , r _ > 3 ,  

L-2 
1 0 

/t 

1 

1 

r = 2~ 

I 2 n - - 2 ,  r = l a .  

Using this and some of the steps which led from (3.2) to (3.4), we see that  

( 1 ) ( i  ) (  ¢~( ~ - '  I2,~-2 
1 v' 1 

1 ) 
O J  r ~  - -  I 

O~ £,n- 1 
1 

• m(Wl,n)3e,nie,n(g), I2n--2, In-l)" ¢(vn)¢al(~)d"~dgdv : 

(note that  in case r > 1, conjugation of 
(1) (1  

v 12n-2 by ~ . - I  Ott,n--1 
* v' 1 1) 
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takes vn-1 to v,)  

- m(wl,n)6l,nie,n(g), I2n-2, In-i)¢(vn-1)¢al(Z)dvd-xdg. 

Note that ¢ satisfies (2.4) with the following changes. In the second property 
(of (2.4)) replace s by s + ~ .  In the fourth property replace s by 1 - (s - ~). 
In the fifth property replace W(T ' ,¢  -1) by W(T'*,¢ -1) in case n is odd and by 

W(T'*,¢*) in case n is even, where 

, l 
1 Zl * / 

1 z2 

1 z , -2  
1 

= ¢ - l ( z l + z 2 +  . . . .  zl+l+'-'+zn-2). 

If r = 1, ¢* = ¢. In detail, we have 

¢(yh, h', b) = ¢(h, h',b), y 6 U(R1), 

( ( )  ) h' o h,h' ,b = #(x)lxlS+~+'~-~¢(h,h'h'o,b), 
X - 1  

• I 
x 6 F ,h o 6 H,,_l, 

¢(h, nh', b) -- ¢(h, h', b), u • U({~n-1) ~ Un-1, 

¢(h, m(a)h', b) - -  I d e t a  11-(8-~)+("-3>/~(h, h ' ,  ba), a • GLn_I(F) .  

The function b ~+ ¢(h, h', b) lies in W(7'*, ¢-1)  in case n is odd and in W(7-'*, ¢*) 

in case n is even. 
Thus we can use (in the reverse direction) the set of the steps which led from 

(3.2) to (3.4) to conclude (3.8). | 

e. APPLICATION OF SHAHIDI'S FUNCTIONAL EQUATION FOR 7-' × ]z. By the 

definition of F~ (see (2.5)), we rewrite (3.8) in the domain (3.3) as 

.(w, = f.._, F~'(X(~,,rl.i,,rl.('), '//)I, rL (/n--I ;)  , ir/_1) 

(3.9) ¢ (z ,_1 )¢  ( -  1) ' - '  (Z)dzd'~d9. 
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At this point we use Shahidi's functional equation and local coefficient for 

GL,~-I × GL1. It is defined as follows. Let a be an irreducible generic rep- 
S-- 1 resentation of GL,~_I(F) and ,j a quasi-character of F*. Put  T/8(x) = ~l(x)lx I 2 

8_ 1 - and as(r)  = cr(r)l det rl 2. Consider the representation 

I..AGL.(F) "K~l,a,st,s~ = .UUp, ~]s,+ "~,. 1 ® O's2+~_ 1. 

Assume that a is realized in its standard Whittaker model with respect to ¢-1 .  

We think of an element e of 7N,O,Sl,~ ~ as a function on GLn(F)  x GL, ,_I(F) ,  

e( m, r) such that  r ~ e( m, r) is in W ( a, ¢-1). Consider the intertwining operator 

given by 

~(?n,r) = /Fn-I  e(Wl'n ( In-1 ; ) m , r ) d z  

and the following Whittaker models: 

We(T/t) : ~_,  e(Wl'n ( In-I ~)m'In-1))¢(Zn-1)dz' 

W_g(m)=/F._ .d(w~,~(1 t ) ) I~-1 m,I~_l ¢(tl)dt. 

These are models with respect to the character ¢ -1  (of Z. ) .  We consider the 

local coefficient c¢ (7/. 1 +(,~_ 1)/2 ® cry2 +~/2-1) defined by 

(3.10) c¢(~/~,+(.-1)/2 ® 6rs2+n/2-1)We(m) = We(m). 
We have, by the multiplicativity of local coefficients, 

(3.11) 

7(r ,  A 2, 2s - 1, ¢) = c¢(#s+;+Cn_l)/2 ® (~'t)*_(s_;)+n/2)7(v', A 2, 2(s - ~) - 1, ¢).  

By (3.10), we get from (3.9) 

= ® /N,\a W(g) fFo_, 

; I . - 1  • 

I~-1 

(3.12) 

Here 

(3.13) 

¢(tl)¢(a -D"-I  (~)dta@dg. 

(F~)(h,m,r)= _IF-~ h, Wl,. 1)m,r  dz, 
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the composition of F~ with the intertwining operator on 7-. Of course we take 
(3.13) in the sense of analytic continuation. In Section 6.d we prove 

LEMMA 3.6: The integral (3.12) converges absolutely (as a multiple integral) in 
a domain of the form 

- Re(() 4- L _< Re(s) < Re(() 4- L', 

(3.14) Re(s) < M 

for some constants L, L', M which depend only on r, T' and #. 

As in Lemma 3.4, we conclude that there is a meromorphic function 

d(~r, T, s, (, ¢) such that equality (3.12) holds (as meromorphic functions) with 

the local coefficient replaced by d(r,  T, S, (, ¢'), and we prove in Section 6.e 

LEMMA 3.7: 

d(Tr, T, S, (, tb) = c¢(/~+¢+(,~-1)/2 x (T')*_(s_¢)+,/2). 

We proved that 

9'(r x ~-', s - (, ¢) A(W, qo~) = C(W, ¢), 
t * T ! c¢(#s+¢+(,~-,)/2 x (T )-(8-¢)+,/2)7( , A2.2(s - 0 - 1, ¢) 

i.e., by (3.11) 

Z ~  2 x__ L '  s-_('-L¢ )-- . A(W, ~¢) = C(W, ¢). 
~/(7-, A , 2(s - () - 1, tb) 

Here C(W, ¢) is the integral on the r.h.s, of (3.12). 

f. LEMMA 3.8: In the domain (3.14), we have 

(-1) cX-  ( )az ag. 

I 0 0 * 

I~-i 0 0 

Here E~ is the subgroup of matrices of the form i 0 

(10,1 G~; Z is the subgroup of matrices of the form h 0 in GL~(F). 
Ir 

(3.15) 

0 

0 in 

0 
1 
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(1  t ) ( 1  t' ) ( 1 0 t~' / 
In-1 I~_~ 

In-, In-l~ 

Let Z' and Z" be the corresponding subgroups. Let 

/ El  = e(z) = I2t-1 e a ~  [ z e F 2~-1 , 

E~' = {e(z) I z~ . . . . .  z~_~ = 0}. 

531 

Z t . Z t t .  

We have 
Ne = E'e. ge-1 ,  

(Here N¢-1 is already embedded as (1  
\ 

E'~ -= 2 'E ' / .  

N¢-1 ~ inside G~; Z' is considered 
1 / 

as a subgroup of GLt(F) as well as a subgroup of GL~(F) and Q,,(5') = m(z').) 
We have 

and so 

(3.16) 

Write 

where 

m(z')X(t'n)rn(z') -1 = X (l,n), 

Ca(.~(z')~m(z') -1) = ¢o(~),  

d(m(z')~m(z')  -1) = d~, 

m(z')~t,~ = ~t,nm(z') ,  

h + l  I~_~ 

Z u ~ -  Z y Z ~  

(10 0) ( 
II-1 ~ 0 1 0 * 

% = 1 0 , z = It 0 . 
/ r  / r  



532 D. SOUDRY Isr. J. Math. 

We have for • = 

(/~ 
1 

k 
u v I~ 

0 u ~ 1 

0 v ~ 

Thus  f rom (3.16), we get  

(3.17) • ¢ ( -1) '~- '  (X)¢ (-1)n-1 (yvr,1)dzdydxdg. 

Note  t h a t  v r emains  the  same for 5 and for m(zy)Zm(zv) -1. We have 

-1 { m(zy), / even 
6~,,m(z~)6t,r, -- uv, t odd  

where 

We also have 

r 1 t--I 1 

0 y 0 - ~  

u~ = u  0 0 0 0 . 

0 0 0 - y  

0 0 0 0 

--I I Uy, 
~l,,~u~t, " =  m(zv)  , 

Thus,  for l even, we have in (3.17) 

even, 
/ odd.  

and  for ~ odd,  
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Note that 

~ _ ~ m ( z ~ )  = - ~ ( z ~ ) ~ _ ~  = i~ , .  
((lo:) 1 0 y 0 - 

I t -1  0 0 20 
1 0 

I t -1  

We have (with previous notation) 

u_y~u--~ = m 1 -y(vr,1...vl,1) ~ 0 u' . 
Ir 0 V I 

Thus 

(3.18) . ¢ ( _ l ) o - l ( e ) d z ~ a g .  . 

g. FACTORING INTEGRATION THROUGH '(** ,~1) ^ 
LEMMA 3.9: In the domain (3.14), we have 

(3.19) 
(1 +1 

/ \ 
Here C~ is the subgroup t *  ) of GLl(F) and the dg integration of (3.19) 

* II-1 \ / 

should be understood in the sense of Iwasawa decomposition. (Recall that Cl is 
the image of C~ in G~ as explained in the notation.) 

Proof'. Factor the dg integration (in the above sense) in (3.18) through Ct. 
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(; ° )..o..vo Write ct,y = Il-1 

(~)(" , , . i , , . ( ' t , yg) ,w, ; ' z (  I~+' 

i~(t)ltlS+¢-l/2(~)(~l,nit,,(g),w~.:z( 1~+1 

and the lemma follows. | 

i_i.-, .i),'--I)-- 
i_1._11._i),'--i) 

h. APPLICATION OF THE FUNCTIONAL EQUATION FOR 7r × ~t. The d~d*t 

integration in (3.19) is a local integral for r x # (with s replaced by s + ~). A 

formal application of the functional equation in this case yields (going back to 

Section e) 

~,(r x #, s + ¢, ¢ ) 7 ( r  x r ' ,  s - ~, ¢) A(W, (3.2O) 7(r,  A 2, 2s - 1, ¢) ~o¢) = D(W, ¢) 

where 

D(W,¢)=/OtEtN,_,\Gt(/F./_~(,,DW('L"J','( t t-, ) al,") tt-'(t) 

( I t + l  (--1) n-1 I t - l ) , I , - 1 ) ' ¢ ( - 1 ) " - ' ( ~ ) d z a ~ d y .  

Recall that al,~ = I2t-1 - 1  and c1,~ = - I i - 1  " 
1 It 

In Section 6.f, we prove 

LEMMA 3.10: The integral (3.20) converges absolutely in a domain of the form 

(3.21) Re(s) + R _< R e ( 0  <_ T 

where the constants R, T depend only on lr, r' and #. 

i. UNFOLDING D(W, ¢) BACK. We unfold D(W, ¢) "back" to an integral similar 

to (3.18). 



Vol. 120, 2000 GAMMA FACTORS FOR 802~+1 XGLn 535 

LEMMA 3.11: 

(3.22) 

eg ---- al,tCl,~ ~ ( Here 
\ 

In the domain (3.21), we have 

1) 
- - 12~ - I  

i 

Proo~ As in Lemma 3.9, we have 

D(W,~)): /.~(1,t)EtNt_I\G ~ /._~(1,t,W(ye~9)/_~(t,n)xZ(~)(-x(~,nig,n(~),wl_lz 

We have, for ~ = m ( :  I~-i ) ' 

(3.23) 

Note that 

Thus 

(3.24) 

l 
1 0 0 _yl : y )  

Ie_: 0 0 
e~-:~e~ = 1 0 = ~'. 

I I - :  0 
1 

o) 
Q,n(Y~ = u 0 - y  

0 0 
and i t ,n (~60~ = 6t,nQ,n(Y~. 

I ~--I I r 

We have for x = u 0 0 0 b' 
0 0 0 v' 

0 0 0 v'~ 

r 
}I 
}~-I 
}1 

it,,~ (y~i~,,~ (y~ -1 --- 
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(3.25) 

(1 0 0 I o l V b  -y 'v '  \ / m 1 0 0 

/~ / 0 0 

Using (3.23)-(3.25), we get 

c --  v l y ~ v  ~ --  v ~ y v l  \ 
b I ) V ! 

.¢ (-1F- l (Z) dza~dg. 

Note tha t  elX(1,~)e~ -1 

For the last equality, if z - h 0 , we change variable z ~ z + y'v'. 
ir  

Note also tha t  -1 h - 1  0 y [ 1 0 Now we 
W l ' n  1 W l ' n  = I r  " 

I ~ /  1 
go on to get 

W(e~g) fz(~,.)xz (~) (xSl,'~i~,n(g)' w~ln z 

= E~. Changing g to elg we get (3.22). | 

• , / , , _ ~  • ¢(~- ( ~ ) d z d ~ d y d g  
1 0 
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It remains to show (in the domain (3.21)) that  the 1.h.s. of (3.20) as written 
in (3.22) is actually .4(W, ~o¢). This we do now. Note that  in the domain (3.24) 
all the following manipulations in the integral (3.22) are justified. 

LEMMA 3.12: We have 

F~(71t(w~,l)h, In, b) --I w n-1 * * (3.26) : FM(¢) ( (m(wl ,n )h  ) ~ , In,  be,n_lb ), 

where M(¢)(h,  I2,~-2, b) = fU,  ¢ (~w~ lh, I2n-2, b)d-~. 

Proo~ The 1.h.s. of (3.26) is, by (3.13), 

- ~ - ~  - - 1  

.-~ ¢ m Y I~-1 n ,uwn_l,b~,~_lb* r,-1 

: ~ n ~ U  Wn--l--1 1 h '~:- ' ,  2n_2, u£,n_l )a~ 

Wn--l_l ) h w•-I I 1.. b,~ 

(( ) ----FM(¢) rn(w~,ln)h , I In, b;,n_lb* • 

Thus, (3.22) equals 

fElNl_l\al W(g) f_~(l,n)xz 

(3.27) Q,n(g), In, b~,n-1 

1 n - I  
to n 

-- l (-11 '~-1 )x~,o~ 

• ¢(a - 1 ) n - '  (~)dzd-2dy 

dgdy 

where'y~ = 50 ,  . Q,n ( ee ) . t ,n 

Note that  conjugation of ~ by m ( -1)  ~-1 changes 
I t -1  

¢(-1)"-1(~) to Ca(~). Perform the conjugation by m(w~,~). We get, writing 
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FM(¢) m(wl,n)" u y #t,nit,n(g),wl,n 
V / 

I t  0 ,b~,n_ 1 ¢(Vr ,~)d( ' " )  = W(g) 
1 tNt-l\Gt (t,n) 

(( o" (, o FM(@) xm(Wl,n #t,nit,n(g), Wl,n h , * 

(3.30) 
k 0 vl 

h 0 
1 

, b*~,n_l ) ¢a('Z)d(Vl, "Z)dg, 

where ~ , n  = m(wl,,~) ", #l,n. We have (1 ) 
~,n = m - h  (~,.m(et,~)) ~°, 

(3.31) 

if n is odd 

(1 ) 
~t,n = m - I t + l  El,n, if n is even. 

I t - 1  

Assume tha t  n is odd. Then  (3.30) equals 

b~,,~_ 1 wl,n h 0 - h  , I,~_1 
1 1 

(,.o.,)) 
(3.32) i~,.(~),w~,,, h o bL.,I._~ C21(e)d(,,~,e)dg. 

1 
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Now factor integration through E~N~_I\N~. Note that it,,~(g) commutes with 

w,~, rn(6t,n), 17~,,~. We get (see [S1], p. 56) that (3.32) equals 

This completes the proof of Theorem 2 in case n is odd (and r _> 1). Assume 

that  n is even. Then (3.30) equals 

(,. o .,) 
s~ 0 b;, . , i ._l  ¢o(e)a(v,,e)ag. 

1 

Now factor, as before, integration through EeN~-I\Nt to get 

b~ n, In-1 I ;), ) 
(3.34) C:(~)dza~dg = A(w, ~o¢). 

This completes the proof of Theorem 2, in case r _> 1. II 

4. P r o o f  o f  T h e o r e m 2  in c a s e r =  n - l - l - - 0  

Assume that  / --- n - 1. We omit (in Section 6) the technical justifications as 

they are easy repetitions of those needed for Section 3. 

a. DIRECT SUBSTITUTION OF ~0¢ IN A(W~ 4p¢). This is done as in the previous 

case. We get (in a domain D of the form (3.3)) 

1 -1 

(4.1) I2n-2, In-l~ ¢(zn-1)dzdg. 
\ 

] 
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b. LEMMA 4.1 : 

(4.2) 

where 

Proof: 

We have (in D) 

A(W, ~¢) = fyt W(g)¢(m(wo~)it,,~(g), I2n-2, In-1)dg 
\at 

D =  1 o e e Z t  . 
e* 

We have 

¢(m(wl ,n)(  I'~-I z I 
1 ) )  h, 2n--2, In--11= 
¢(u~. m(wl,,,) ( I,,-1 z )  

(zo) 
where u.  = m(wl,n)u 0 z' m(wl,~) -1, and this gives 

Using this in (4.1) we get 

= Iv, \ at 

In-1 z 
(Az is such that  1 

• z' h, I2n-2,I,,-1 • 
In-1 

z Az)) 
1 z' g ¢(m(wl,n)it,n 

I.-1 

w (g)¢(m(wl,.)io, O ), h.-2, I~- 0@. 

Az) 
z' ~ S O 2 . - 1 . )  

In-1 

C. FACTORING INTEGRATION THROUGH Hr. Since t = n - 1, we can embed 

Ht  = SO2n_2(F) in Gt = S02~-1(F)  by 



542 D. SOUDRY Isr. J. Math. 

Note that Vt C H~ is indeed the standard unipotent subgroup of Ht and that 

(:1 
(1 1 

gation by m(wl,n) takes it to ( 

\ 
in (4.2) through Ht gives (in D) 
(4.3) 

(:, :). .:  w --con. 
\ 

A B ~ Therefore, factoring integration 
C D ] 

1 

A(W,~a¢) = /g~ \ae  /Vt\Ht W(J'~-l'e(h)g)¢(m(wl"~)it'n(g)'h'I'~-Odhdg" 

d. APPLYING THE FUNCTIONAL EQUATION FOR 7r x T ~. The inner dh-integral 
in (4.3) is the local integral for ~r x T' on SO2n-1 xGLn_l. Let us apply the local 
functional equation, justifications being as in Section 3.c. We get (see Section 1) 

(4.4) 

"~(~ x ~',s - ¢,¢) 
"Y 0-S A~ 2-~-- ~)'---]-, ¢)A(W, ~o¢) = 

/Hi\at L\H, W(Jn-l't(h)a:-~'tg)¢~(m(wl'n)it'n(g)'h'In-')dhdg" 

Here, ¢~ is defined similarly to (3.6). Put, for h • H,,, 

Ch(h',b) = ¢(h,h',b), h' • H,~-I, b • GLn-I(F),  

Ch lies in Vp~,,s_¢. Then 

n - 1  

[h' "-' b* b *~ ¢~(h,h',b) = M(Wn-l,¢h)~ , n-1 ]" 

We continue the calculation (in the domain of convergence D', of the form 
(3.7)) of the integral on the r.h.s, of (4.4). 

e. UNFOLDING B(W, cp¢) BACK. Denote by B(W,~o~) the r.h.s, of (4.4). We 

have (in D') 

.<",..:S,,,,°,S.,,., 
(4.5) m(wl,n) ~;-' Q,n(g), I2n-2, In- l)  dhdg 

h) 
1 
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where ¢(h, h', b) = ~)~(h w~-I , h'b), and then we get 

fvt W'a n-1 ""m'w , ~ - t  I2, , -2, /n-a)  B(W, qaO) = ( n_l,eg)q~( ( ~,n) ien(9), dg 
\Gt 

= W(an-l'eg)¢(m(wl'n 0 1 )'51 "~e,n(g), 
t\Gt ~-1 

(4.6) I2n-2, In-1)~ )(-1)n-a (z,_l)dzdg 

where 

f. A P P L I C A T I O N  

(4.6), we have 

1 I,~- 2 I 
1 

1 
51= 1 " 

1 
I,~-2 

OF SHAHIDI'S FUNCTIONAL EQUATION FOR T' X ~.  F r o m  

B(W,~¢)=fN, kG W(an_l,eg)/F~_lF~(,~-lie,n(g),Wl,n(In-1 1 )  , I n - l )  

1 rt--1 ~(- ) (z._~)azag. 

As in Section 3.e, we have (see (3.12), (3.13)) 

B(W, ~+) =c¢ (m+¢+(.-1)/~ × (¢)*-(,-0+-/~)" 

~[5~-lie,n(g),-1 1 t 
tO1, n ! n _ l  t\Gt ~-1 

(4.7) (In-1 (_x)n_l ) ,ln_l)¢(tl)dtdg" 

Reasoning as before, we continue the calculation in a domain D" of the form 
(3.14). Denote the integral in (4.7) by C(W, ¢). Using (3.11), we have 

7(~ x ¢ , s - ~ , ¢ )  
(4.8) .y(~, ~ : ~ - ~  _-~-~:~, ¢) A(W, ~¢) = C(W, ¢). 

It is easy to check that in both cases (n even or odd), we have 

(4.9) C(W, , )  = W(9)~(m(w~,~)ie,.(9), I,,, I.-1)d9 
tNt-x\Gt 

(see (3.15) for notation). 
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g. FACTORING INTEGRATION THROUGH ( *  ) ^ .  * I t -1  This gives 

.(.,+):i.,.,.,,i..i.<,.>.(,,,,,(' ,_i ) ~q) #(i~)[,[ .+~-½ 
(,,0) ~ (m(~,:~)~, .(.), ~o,/._j....,.. 
h. APPLICATION OF THE FUNCTIONAL EQUATION F O R .  X #. 

~(~  x ~' ,  s - ¢, ¢ ) ~ ( ~  x u, s + ¢, ¢ )  
7(T, A 2, 2(s - ¢) + 1, ¢)  A(W, ~o¢) = 

fel~tNl_l\G, f. f~.., W((]l,tyjl,l ( t  t - 1 )  ~,t)u_~(t)ltl½_(~+o. 
(4.11) • F$ (m(w~ln)it,n (g), In, In-1)dyd*tdg. 

We continue, as before, in a domain D'" of the form (3.21). Denote the integral 
in (4.11) by D(W, ¢). 

Note that conjugation by al,t flips t to t -1 and i. UNFOLDING D(W, ¢) BACK. 
takes 

A h-1  0 0 
~=\y (1  It-1 to 1 0 --~e 

I~-1 

which is a general element of Et, and clearly 9 ~-+ ~(m(w~)Q,, , (g) ,  I,~, In-z) is 
left invariant by e. Thus 

D(W, ( ¢ ) =  f~..,.., .,o, f~.., W(~l,tal,t~9) 

~(rn(w~,ln)it,n(9), In, I._l)dyd9 

( 1) 
(el ~--- Cl,tal,l ---- --/2t--1 ) 

1 

= fE, N,_~\G. W(g)~(m(w~)Q,n(et9) ,  In, In-1)d9 
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as in (_3.26) W(g)FM(,) m(w~,.) zt,,,(etg), !., b._~ @. 
tNt-:\G~ 

We have 

m(wLln) ~" zt,.(et) = m 1 

Factoring integration through EtNt-l \Nt,  we get 

[ 
D(W, ¢) = JN,~G,. 

= ( / . - 1  f..,°~(,,f~.~,(,,..(,,,(' _~:_,)~.. ;), 
In_l)¢-:(z,_l)dzdg. 

b* ) W:,n = b~ and hence 
- -  n - - 1  

We have w:, .-:  ( 1 

¢(zn_l)dzdg 

= 2(w, ~). 

This proves Theorem 2 in case r -- 0. 

")" ) 1 b , , / , - 1  
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5. P r o o f  o f  T h e o r e m  2 in case  r = n - / - 1 < 0 

Assume that  t _> n (i.e. r < 0). We give the details briefly. The technical 

justifications are similar in nature to those of Section 3 and even easier, so we 

omit them. 

Substitute ~o~ in A(W, ~o~) to get 

A(W,~,)=/V.\H. f~.,,, W(Sjn,t(h)) fFo_. 
z h (o1  

This integral converges absolutely in a domain D of type (3.3). 
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We have 

m 0 1 h ) 

with d5 = a~ r, and so factoring the dz-integration in (5.1) it becomes (in the 
domain D) 

(5.2) 

wherem(Zn-1)= {m(o 01) zEZn-1}. Factorthedh-integrationin(5.2) 

is left-m ( In-ly 1 ) invariant. We get 

[ I~-1 
/5.U.\H. / W ( ~  y 1 r 

(5.3) h, I2n-2, I,_l)d(y, x, r)dh. 
le_n)^'Jme(h))¢(m(wl, n) 

nereZnmm(Zn-l'{ (Iy -1 1)'yEFn-1}) • 
Now factor integration in (5.3) through 

We get 

( 5 . 4 )  

C 

r Ii-n 
• ¢(m(wl,~)h, h', In_~)d-~dh'drdh. 

Note that  ZnUnHn-1 is a subgroup of Hn. Now apply the functional equation 
for 7r x T' (on SO2e+1 xGL~_I), 

~(~ × ~ ' , 8  - ¢, ¢) A(W, ~) 
~f(r', A 2, 2(s - ~) - 1, ¢) 
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(5.5) 
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W | n-l,e Jn-l,e( )an_i,  t 1 
r I~_vi 

• ¢~(m(wi, , )h,  h', I,_l)d-2dh'drdh. 

The last integral converges in a domain D ~ of the form 

- R e ( ¢ ) + A _ < R e ( s ) _ < R e ( ¢ ) + B  (A>>0,  B < < 0 )  

j,~,~(h)). 
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Here dn,~ = C n - l , ~ a n - l , £  

n l  ) 
/Z~u.xH./Ft_~/X(~ ~ ) W ~  cn-l'lxan-l'~ 1 jn,t(h) " 

- ' r I~_ n 
(5.6) • ¢~ (m(wlm)h, I2,~-2, I,~_l)d~drdh 

= f.(.._l>..\., f.<..,, W('xdn~ijn't(h))+~(m(Wl'n)h'12n-2'In-l)d'dh" 

as (¢ defined as before) 

(5.7) 

(I~-2 ) 
0 1 

-I2(t-,~)+3 . Rewrite (5.6) 
1 0 

I,~-2 

/m(Zn-1)Un\Hn /X(n,t)W(xdy~nlJr~'~(h))~((m(Wl'n)h)wn-l'I2n--2'In--1)d'xdh" 

and 

tOjn_1 
¢~(m(wim)h,h' ,I ,~_i) = ¢~ h , - ,  

Now the integral (5.5) becomes 

where A, B depend on ~r, T' and # and (5.5) is understood in the sense of analytic 

continuation (equality of rational functions of q-S). Here 

¢~(h,h',b) = M ( w , - l , ¢ h  h'~.-l ,b~_l b 

for h E H~, h' E H , - i ,  b E GLn- I (F )  and Ch(h',b) = ¢(h,h',b). We continue 
in the domain D ~. 

Note that  
• rht~a,~-I ~-I . [~1~-~  3n-l,~( ) n-l,i  = an-i,~3n-l,t~'t ) 
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Fac tor in tegra t ion through{m(  In-1 1 )  } in case n - ,  is even and through 

tin_2 0 zl 
1 0 

1 

0 -z2  0 1 0 
0 0 z2 1 
0 0 0 

z~ 
0 
In-2 

in case n - 1 is odd. Let Iv"' 
g ( n ) - =  Fp,(Zn_I)U n 

f i n - -  2 0 Z 1 

1 0 

1 

0 --Z 2 

0 0 
0 0 

0 1 
Z2 

0 

0 ~i 
1 0 

I.-2 

n odd, 

, n even. 

Then (5.7) becomes 

Now we are ready to apply Shahidi's functional equation. We get (interpretation 
and notation as before) 

~(~ x r', s - ¢, ¢) 
: ~ -  ~¢)A(W, ~+) = 

W(~d~n~ijn,t(h)) Fs(m(w, ,n)(m(w, , , )h)  . - x  Wl,n 
~)\H~ In,t) n-1 

The last integral converges absolutely in the domain D" of the form 

- Re(C) + B <_ Re(s) _ Re(C) + A, 

Re(s) < C, 
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where A, B,  C are constants  which depend on 7r, r and # (A, C << 0; B >> 0). In  

the last domain  (5.9) equals 

,o'_,))) 
(5.10) 5"~-' h ~ : - '  , In, I ,~_l )¢( t , )d td~dh.  

Here 

We have 

(5.11) 

d,~- i . ( [ ~,~-1 m 
1 

(I~_~ ] 
0 0 0 1 
0 0 - 1  0 
0 - 1  0 0 
1 0 0 0 

/ , _ 2  

i n _ l  " d~,-t 1 = In-1 I t - n  

Using (5.11), (5.10) becomes 

In case n -  1 is even, V~ = v Z~_ 1 On, where 

z) 
In case n - 1 is odd, Vn n is obtained from V ('~) by "deleting" the coordinates 

a, b, c in 
1 a 0 b 0 0 c 0 0 

I , - a  0 0 0 0 0 0 0 
1 0 0 0 0 0 - c  

1 0 0 0 0 0 
I2(t- .)+1 0 0 0 0 

1 0 0 - b  
1 0 0 

I n _  3 a r 

1 

Now we want to "prepare" (5.12) for the application of the functional equat ion 
--1 n--1 w "-1  for ~r x #. We check tha t  h ~-> Fj~(m(wl,,~)5 2 h . , In,  I,~-1) is left-invariant 



550 D.  S O U D R Y  Isr.  J .  M a t h .  

under 

dnn,-~ 1 In-1 n-1 dn,e , 
Ie-n  

[ (I1  I)1" n-~ l  . 5 ~ - 1  
which is equal to 5 2 3n,e In-1 Thus, factoring integra- 

tion in (5.12) through thc last subgroup (call it Y) gives 

i..;.,lurn S.(n,,} iFn_ I ~/V (( : In-I jTl~_n ) A "~,' I in,' (~)) " 
--I n- -1  wn n - 1  • Fs (m(wl ,n )5  2 h , I,~, In-1)dyd-~dh 

:i i.<._,._,>i..s.<,.>.(.,,l.(' ,_i)(1 "2 
n-i . ) 8+¢-½ 

dn, ~ 3n,e(h) t4t)ltl 
/ 

- 1  n - - 1  h) n - 1  
• F~,(m(wl,n)5 2 h , , In, In-1)d"~ld*td"~2dh. (5.13) 

Here 

1) 

Apply the functional equation for ~r x # on the inner dZid*t integral in (5.13). 

We get 

~(~ x r ' , s  - ¢, ¢ )~ (~  x , , s  + ¢ , ¢  
?(T, A 2, 2(s - ¢) - 1, ¢) A(W,  ~¢) = 

(5.14) - -  - t  n-1 ,~,-1 , • Fs (m(wim)52  h , I n , I n - i ) d ~ i d  td-~2dh. 

The integral (5.14) converges in a domain D'" of the form (3.21). We continue 

in Dm. The integral in (5.14) then equals (unfolding the d*t integration back in) 
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(5.15) --1 n--1 wn n-1  

Here 

Cl,tal,ldn,t -~ jn,t( 53), 

53 

0 
--In-3 

0 -1 
1 

1 
-1 0 

-In-3 
1 0 

and ( 1) 
5l,eal,e = 54 = -I2t-1 • 

1 

Let us separa te  a t  this point  the cases n - 1 even and n - 1 odd. Assume tha t  ((1)) 
n - 1 is even. Note  tha t  54 conjugates jn,t  y I,~-1 to 

Jn,t I 1 

yl 
I.-i  0 

In-1 !) 
1 

and tha t  we may  write 51 • 52 
1 

where 5 C X(n,e). Thus  (5.15) becomes 

) i n t h e  form5j.,l(m(ly I._1))' 

(5.16) /~ 1~,-~ ~n,~ W(~'jn''(h))~(m(w~'~)h'"'"-l)~dh 
( 1) 

where U~n is the conjugate  of U~ by I2~-2 . In (5.16) change h ~ h ~" , 
1 

to obta in  

(5.17) 

f(zv-,u'""\ H,~/'(.,o W(Sn'exJn't(65h)an't)~(m(wL1)hWn'In'ln-1)dSdh" 
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Here 

65 = 

0 
--In_ 2 

0 -1 
-1 0 

--In_ 2 i/ 
Change h ~ 65h in (5.17) to get 

= fZ~_I~I.\H" f~(,,.e,W@ n''~jn''(h)an'e) 

FM(¢)(m(1 -I"-~)n)~",l,,,bZ-~an=f~:_,~.\,,°fx,°.,, 
W@,~,lxjn,~(h)an,e)FM(¢,(hW",( 1 _b:_l)Wa,n,In-1) d-~dh 

FM(,) h ~°n, wx,,~ 1 1 b~, In-1 • ¢(zn-1)dzd~dh 

= 2 ( w ,  ~o,). 

Assume that  n - 1 is odd. Change in (5.15) h ~ 63h. Note that  626~ = 65. 
We get 

(5.18) 

 lw( l( 1 • 1)Jn,h,  
~ (m(w~l )65h ~" , In, In_l )d-21d-22dh. 
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Write 51 " 52 in the form ~ .  a, where 5 E X(n,t) and 
1 

( i 1 0 al  0 a2 0 a3 0 53~ 
I,~-3 0 0 0 0 0 a~ 

1 0 0 0 0 0 
1 0 0 0 - a 2  

a = jn,t 1 0 0 0 
1 0 -a l  

I,,-3 0 
\ 1 j 

Note that  h ~ F$(m(w~)64h ~", In, In-l) is left invariant under a. We get 

{(1 } 
(where Un-i = u E Un-1 ) 

1 

(note that  (rn(w~,~)Ss) ~°" = m 1 ) 

=fzv.._.\H.f.(.,,)W(SJn't(h))FM(~)(h'( I 

¢(z,,_,)dza aah = J(W, 

This completes the proof of Theorem 2. | 
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_b~,_l)wl,n,In-1) d:-2dh 

6. J u s t i f i c a t i o n s  

We bring here the technical justifications of the formal manipulations performed 

in Section 3 (absolute convergence of integrals in certain domains and special 

substitutions). Those needed for Section 4 are easy repetitions of those of Section 

3 and those needed for Section 5 are similar in nature (and easier) so we omit 

them. 
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a. PROOF OF LEMMA 3.1. We have to show the absolute convergence of the 
integral (3.2) in a domain of the form (3.3). 

Using the Iwasawa decomposition, it is enough to consider 

(6.1) 

/A Iw(a)la-F~(a) /-Z(,,=> /F._, ;) 
5Q,n (5), I2,,-2, In-1)ldzd~da. 

Here 6t is the modular function with respect to the Borel subgroup of Gt. 

Conjugating it,n(~) to the left, we get (changing variables in • and in z) 

fA.w('~)la['(a)ldetal"-¢+('-"+")/'f~(,,.> fFo_ 1¢(,-,@'~,,, ( I'-' ~)) 

Here s' = Re(s) and ¢' = Re(().  It is enough to replace the d-~-integration 

over X(~"~) by that over the full lower Siegel radical, and show convergence. 

Conjugating by m(VOl,.) and replace ¢ by its right m(wl,n) translate, we now 

consider 

fa lW(5)16[l(h)ldetalS'-('+(1-n+at)/'~,,x.,._ l¢(m(: in_~)'(x), 

Write the following Iw~awa decompositions: (1) 
1 

~(z)  = v~t~k~, 

where kz E GLn(O), kx E Hn(O), vz E Vn and 

bz = diag(b2,. . . ,  bn-1), tx = d iag( t l , . . . ,  tn, t~ l , . . . , t l -1 ) .  

Denote 

[x] = max{ l ,  I=1 }, [z] = max{ l ,  I zl }, 
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where t 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

where 
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• ] denotes the sup-norm• We have seen in IS1], Sect. 11.15 that 

[x] -2j_< tt~,l <[x] 2j, j = l , . . . , n - 1 ,  

[~1-~ < Itx . . . . .  t~l < [~]-~, 

It~l -~ = [ :C,  
Ibm. . . . .  b,~J = m a x { l ,  I~,1, . . - ,  [z,~l}, i ___ 2, 

X 

• Z2 

, Z ~ 

X2 

Xl 

Note that, from (6.7), 

(6.8) [~]-~ <_ Ib~l < [~1, i > 2, 

(6.9) I~1 = Ib2".--" b.I -~  = [z] -~ .  

By (6.9) and (2.4), the inner dz-integration of (6.3) equals 

(6.10) fF,~_~ /u. [z]-"'-2¢'-'~/2j¢(~(x)m(k~)'I2"-2' (a Ir ) bz)ldzdx 
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where I#(t)l = It]"'. By (2.4), (6.5), (6.6), the integral (6.10) is majorized by 

fi o_l 

Here No = 1 if s' - ~' + (n - 3)/2 > 0, and No = n if s' - ~' + (n - 3)/2 < 0. As 
in [$1], Sect. 4.4, we may majorize [¢(k~m(k,), h,~-2, t)l by a linear combination 
with positive coefficients of positive quasi-characters rl(t). Here t is diagonal. By 
(6.4), (6.6), (6.8), we may consider, instead of (6.11), 

(6.12) ~](a) f ( [ z ] .  [xl])-~"-2¢'-'~/2[x]-N°(~'-;'+("-3)/2)+N[z]Mdzdx 

where M, N are positive and depend on C only. For the dz-integration to 
converge in (6.12), we must have 

1 - M '  (6.13) - # '  - 2¢' - ~n + M < 
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where M' is large enough. In particular, - # '  - 2(' - ½n < 0, and since [xl] _> 1, 
(6.12) is majorized by a constant multiple of 

For the dx-integration to converge, we must have 

n - 3 _ N  , (6.14) + N < 

where N '  is large enough. Returning to (6.3), it remains to consider 

fA  ' ' 2 IW(a) lSi -~(a)u(~)l det al" -¢ +(~-.+2e)/ da. 

Using the estimate in [S1], Sect. 2.3, the last integral converges in a domain of 

the form 

(6.15) 

where N"  depends on ~r and ~. 

s' - ¢' > N" 

Gathering the conditions (6.13)-(6.15) gives a 

domain of the form (3.3), and this concludes the proof of Lemma 3.1. | 

b. PROOF OF LEMMA 3.3. It is clear that it is enough to establish the absolute 

convergence of (3.8) in the domain (3.7). Using the Iwasawa decomposition, it is 

enough to consider 

( 
(6.16) 5~e,,~Q,,~(&), S2,,-2, I,~_~)[d(z, ~, a). 

Since ~,,~ and Q,,,(~) commute, we may replace ¢ by its right ~,,~ translate, and 

then consider (6.16) with 6t,n omitted. Now (6.16) looks exactly like (6.1), with ¢ 

replaced by ¢. Note that ¢ lies in the space of IndH~ ' (#8+¢ ® Pr',-(8-¢)). Now we 

repeat word for word the proof in 6.a, and get that the integral (3.6) converges 

absolutely in a domain of the form (3.7). | 

c. PROOF OF L E M M A  3.4. We have to compute A(W, ~o~,) and B(W, ~¢~) for 

special substitutions. Let ¢0 have support in R1V, where V is a small neigh- 

bourhood of I2n. By this we mean that 

(6.17) ¢o(h,h',b)=O, hC~R1V, h' eHn-~, bEGLn_~(F) .  



Vol. 120, 2000 GAMMA FACTORS FOR SO2e+1 xGL,, 557 

Assume also that ¢o is constant on V. Thus 

¢o ho * v, h e, b = tt(x)lxl~+i+"-~¢o(I2,, heho ,, b), v • V 
X-1 

(6.18) = ~(x)lxl*+¢+'~-~C'(h'h'o, b), 

where C' lies in the space of p~,,~_~ = IndoH"-] (F)_.._ T~_;. It follows from (6.17), 
(6.18) that  

(6.19) C~(h,h e,b)=O, h C R z V ,  

(6.20) 

C~ 
((x, h' o * v, h', b) = #(x)lxl s+¢+n-~ 

X-1 
n - 1  

I I I 03 n * * M(w,~_l,C)((hho) - ' ,be, ,_fb ), v • V. 

Now let us take ¢ such that its right translate by m(wl,n)flt,,~ is ¢o, and use (3.4) 

to compute A(W, ~0¢). Choose V of the form H,~ n (I2n + M2,(pN)) (N large (1) 
enough). Then I2n-2 E Rlt/" is equivalent to v I2n-2 E V. 

v ~ 1 * v' 1 
This shows that  

w(g) fx ¢'(~Q,,~-l(g),l,~-l)¢a(~)cl~dg (6.21) A(W, ~P4,) = a e\c~ ¢e.,,-~) 

where ~ is the measure of the intersection of V and the unipotent radical of R1. 

Similarly, by (6.19), (6.20), we compute B(W, ¢p¢) from (3.6) and get 

B(W' ~¢) = c~ fN,\ae W(g) /~<e,._l) 

(6.22) M(W._l, ¢') ~o<n_zi~,._~(g) "-~, b~,~-i ¢~ -w-~(~)d~d9. 

The integrals (6.22) and (6.21) (as meromorphic functions) are proportional by 

the factor "Y('~×~"s-~'¢) by the local functional equation for 7r and T on ~'(v' ,A~,2(s-~)- 1,~b) ' 
Ge × GLn-I (F) .  | 

d. PROOF OF LEMMA 3.6. 

m o  

Note that 

= F~(h, mmo,,'), 
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(6.24) 

(h, (b :)re, r) :]A(X)IXls-P-~--(n-t-1)I21 detbl-S-l-~-l'(n-t-1)12~(h,m,?'b), 

for b E GL~_I(F), x E F*. Using the Iwasawa decomposition in (3.12), it is 
enough to take g = 5 E Al and omit 5t,n. Conjugating ~ ~-~ ie,n(5)SQ,~(5-1), 
using (6.23), (6.24), and changing variable in t (in (3.12)), we obtain 

fAt ]W(a)[~-1 (5)[a 1 [2s+/~'--n-l[ get a[-S+(4-(2t+l-n)/2 

I.<,,o> I.o_ 15 (., w,-:,~ ( 1 in_l) (/''t" 1 ) t (_l)n_ 1 , 

It-1 

(6 .25)  

°' o, ,.1) ) ~(',~,a) 
We will determine convergence of the integral obtained from (6.25) by replacing 
~(l,n) with the full radical U,~. (This, of course, will imply convergence of (6.25).) 
Thus (after simple conjugations, and replacing F$ by a translate by a Weyl 
element), we may consider 

iAt tW(5)ls"[l(5)lall2S'Wlff -n-ll detaFS'+¢'+(2t+l-n)/2 f-U~×F n-1 

(6.26) I~(~(x),(Iz -1 1)  ( a2 

Write the Iwasawa decomposition 

at ir+ll) d(z'x'a)" 

( ')  1 ". 

" kz (Iz-1 1) (CoZ Oe) 1 
1 

where Cz = diag(cl , . . . ,  cn-1) and k~ E GLn(O). Note that 

[z] = m a x { l ,  I zl } = lel = I det cz l - k  

In general, 
Icic,+l" . . . -  c , - l e l  - max ( l ,  Izlh Iz~l , . . . ,  I z , - i }  
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and hence 

max{l, Izll,-.., Iz,-d < [z]. 
(6.27) [z] -1  _< Ic~l = max{i, Izll,.-., Iz& 

Using (6.23), (6.24), and conjugating ~(x) by m(kz), (6.26) becomes 

fA W(a)t~-fl(a)lall2S +.'-n-l} det a[ -s'+¢ +(2t+1-,)/2 
t 

f~o ×Fn-1 [zl2S'+"'-"-I ~(~(xlm(k.), I., 

' .  

a l  

Ir+l 

Now write the Iwasawa decomposition of ~(x) as in 6.1 (with the same notation) 
and recall (6.4)-(6.6). Using (6.23), (6.24), we see, as in 6.a, that  it suffices to 
consider instead of (6.28) 

A, IW(a) 15tl (a)[al 12s'+~''-"-1[ det a1-8'+¢+(2t+l-n)/2 

f[z]2~'+t,'+,~- 11 18'+¢'+~ ' -(n+1)/2, t,,_11-2¢+,,'+,,+11 det(t) It1..... 

)) (6.29) ~ (\I2n,In, at cztz d(z,x,a).  

Now majorize IF~(I2,, In, r)l by a gauge on GLn_I(F)  (see IS1], Sect. 2.3). Thus, 
for the dz-integration in (6.29), we have to require 

(6.30) s' < -M1 

where M1 >> 0 (depending on T' and #). We may take M1 large enough, so that  
for s as in (6.30), - 2 s '  - #' + n + 1 > 0. It is easy to see that  [t 1 , . . . ,  tn_ 1 [ _< 1, and 
hence It1 • . . . .  tn_l] -28'- t ' '+ '+1 _< 1. The da-integrations will require conditions 
of the form 

(6.31) s' + ~' >/1//2 

and 

- s '  + ¢' > M3 
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where M2,M3 >> 0 and depend on 7r,/z, 7 '. We may take M2 so large that  
s' q- ~' + #' - (n + 1)/2 > 0, and then, since [ det(t)[ _< [x] -1, the dr-integration 

is majorized by 

f [x] -- ( s '  -1-¢' h-/~' -- ( n +  1 ) / 2  ) dx 

which converges due to (6.31). The conditions (6.29)-(6.31) give a domain of the 

form (3.14). II 

e. PROOF OF LEMMA 3.7. We have to compute the integrals in both sides 

of (3.12) for a special substitution as we did in Sect. 6.c. We make the same 

substitutions as we did in [S1], Prop. 6.2 (for W and for F$ replacing ~r,8). We 

get that  B(W, ~o¢) (we use the form (3.9)) equals 

.;. 
(the constant c is a measure of a unipotent group close to I2,~). The same 

substitution to the r.h.s, of (3.12) gives 

(6.33) 

:. ( :i, i(1,.: )) . I._, ( - i )  . - 1  , i . _ ,  ¢( t l )a t  
n - ~  It-1 

(with the same constant c). The proportionality factor between (6.32) and (6.33) 

is the local coefficient c¢(#s+¢+(,-1)/2 x (T')*_(s_¢)+,/2). | 

f. PROOF OF LEMMA 3.10. Since all manipulations in the proof of Lemma 

3.11 and those leading to (3.33) and (3.34) are formal, i.e. consist of variable 
changes and integration collapsing, it is enough to establish a domain of absolute 

convergence of (3.33) and (3.34), which define .4(W, qo¢). Thus it remains to 

apply Lemma 3.1, with ( - ( , - s )  replacing (~, s). | 

[J.PS.S.] 

[Shl] 
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