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ABSTRACT

In this paper we prove the full multiplicativity (in both variables) of
gamma factors for generic representations of SOg¢41 XGLp. These
gamma factors are initially defined as proportionality factors of local
functional equations, derived from a corresponding global theory of cer-
tain Rankin—Selberg integrals which interpolate standard L-functions for
S02¢+1 XGLy.

0. Introduction, preliminaries and notation

In {S1,2] we defined local gamma factors v(x x 7, s,%) for a pair of generic rep-
resentations 7 and 7 of SOgey1(F) and GL,(F) respectively, over a local field
F. Here s is a complex variable and v is a nontrivial additive character of F.
Our main task in this paper is to prove that the gamma factor is multiplicative
in the first variable, when F' is nonarchimedean. Namely, if 7 is induced from a
maximal parabolic subgroup, with Levi part isomorphic to GLg(F) x SOgp 41 (F)
(k+£' = £), and from generic representations o and 7’ of GLi(F') and SOqp 41 (F')
respectively, then

THEOREM 1:

0.1)  ~(rx7,8,9)=w (-1 (0 x 7,5,9)7(F x 7,5,9)7(x' x T,5,9).

The first two gamma factors are ones for GLx x GL, (see [J.PS.S]). These
gamma factors are identical to the corresponding local coefficients for GLg x GLy,,
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defined by Shahidi {(we use this fact in the paper). This was proved by Shahidi
in [Sh3]. We proved (0.1) in case F is archimedean {see [S2]) and in case F is
nonarchimedean and £ < n (see [S1]). To complete the proof of (0.1) in case
£ > n, we prove a partial multiplicativity of the gamma factor in the second
variable. More precisely, assume that

r= Indg}"‘(f) p® 71 (normalized induction)
1,n—

where P; ,_, is the standard parabolic subgroup of GLy(F) of type (1,n — 1),
 is a quasi-character of F* and 7' is a generic representation of GLy,—1(F"). We
assume, for simplicity of future calculations, that u(—1) = 1. Then

THEOREM 2:

(0.2) Y(m x 7, 8,9) = y(m X p, 8, 9)y(w x ', 8,9).

Using global arguments, we will conclude from Theorems 1 and 2 the
multiplicativity of the gamma factor in the second variable as well, and this
will conclude the full multiplicativity of the gamma factor.

THEOREM 3: Assume that 7 is induced from a maximal parabolic subgroup,
whose Levi part is isomorphic to GLy,, X GLy,, and from the irreducible (generic)
representation 1y ® To. Then

’Y(ﬂ TS, 1/’) = ’)’(7!' ® 71, 8, 1/1)’7’(7" ® 72,8, ¢)

These multiplicativity properties show that our gamma factor is identical with
the Shahidi local coefficient on SOg¢41 X GLy,. The multiplicativity of the Shahidi
local coefficient is immediate from its definition and a similar property of inter-
twining operators, while the proof of this property of our gamma factor is long
and very technical. However, our gamma factors appear in the local theory of
Rankin-Selberg convolutions for SOy XGL,,, which can locate poles of the
corresponding tensor L-functions which, in turn, play an important role in the
application of the converse theorem to the proof of existence of a lifting of cuspidal
generic representations of SOz2¢41(A) to automorphic representations of GLa¢(A).

Let us explain how (0.2) and (0.1), for £ < n, imply (0.1) for £ > n. Assume
that £ > n and 7 is induced from o ® 7’ as before. Take ¢, such that n +¢ > £,
and choose characters yi, ...,y of F* such that p;(—1) =1,i=1,...,¢. Define

------
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P| ., isthe standard parabolic subgroup of GLn4:(F) of type (1,...,1,n). By
{0.1) (for £ < n + 1),

03)  y(mx7,5,9) = w(=1)*7(0 X 7,5,9)7(6 x 7, 5,9)v(x' x 7, 5,).
A repeated application of (0.2) yields

t

(0.4) y(r' % Ty 8,9) = [Hy(w’ X iy 8, )| - y(m x 7, 8,9).

i=1
Also the gamma factors for GLg x GLy are known to be multiplicative [J.PS.S],
and so

Yo X Ty 5,9)y(6 X 7,8, 9) =

i
(0.5) [Hv(ff X iy 8, 9)V(6 X iy S, 1/1)]7(0 x7,8,9)Y(6 X 7,8, 9).
i=1

Substitute (0.4), (0.5) in (0.3); then

Y(m X T,8,1) :w;(_l)k')’(o' x 7,8,9)y(0 x 7,5, 1!’)7(7", X T,8,%)
t

(06) ‘ H’Y(U X Uiy S, TP)’Y(& X Wiy S, 1/))7(7rl X Wiy S, 1»[))

i=1
A repeated application of (0.2) gives

t

(0.7) y(m x T,8,9) = [H'y(w X ui,s,d))]'y(w X 7,8,%).

=1

LeEMmMA: For a quasi-character p of F*, such that pu(—1) = 1, y(m x p,s,9) is
multiplicative in .

Proof: Let m > £ and let

Tmp =IndoF) @ . @ p,

where B is the Borel subgroup of GL,,(F). By (0.6),

V(T X Ty 8, %) = [Y(0 X 1, 8, Y)Y(6 X p, 8, P)y(n' x p, s, 9)]™,

and by (0.7),
7(77 X Tm,us Sy 1/)) = [’)’(7( X [, S, ¢)]m
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Thus

(0.8) ({7 x 8, 9)™ = [v(0 % g1, 8, 9)¥(G X g, 5, %)v(n' % g, 5,9)]™

for all m > £. This implies
(0.9) v(m X g, s,9) = (0 x p,8,9)y(6 % p, s, 9)y(7" x p,5,9). W

Using (0.9), we can rewrite (0.7) as

t

Y(w X 7, 5,) =[H7(0 X iy $,9)7(6 X iy 8,9)y(n' X pus, 8, 1/1)]'

i=1

(0.10) “y(m x 1,8, 9).

Now compare (0.10) with (0.6) to get

This idea of proving (0.1) in case £ > n, using (0.2) and (0.1) in case £ < n, is
similar to the one in [J.PS.S]. Most of the work of this paper is to prove Theorem
2.

Let us show how to prove Theorem 3, based on Theorems 1 and 2 and global
arguments.

Proof of Theorem 3: Since Theorem 1 gives multiplicativity in the first variable,
it is enough to prove Theorem 3 for supercuspidal 7. Let

......

where P, . .. is the standard parabolic subgroup of GL.(F) of type
(n1,...,np), n1 +-+-+n,. =n, and 7,...,7, are supercuspidal representations
of GL,,, (F),...,GL, (F). It suffices to prove that

r
Y(r®T,8,¢)= H’y(w ® Tiy 5, 9).
i=1
We can embed 7 (resp. 7;) as a local factor of an irreducible, automorphic, cus-
pidal generic representation 7 (resp. 7;) of SOgsr1(A) (resp. GLyp,(A)), where
A is the ring of adeles of a number field k, such that at a certain place vy,
k, = F, T,, = =™, Tip, = Ti, and for all other finite places v, 7, and 7;,
are unramified (¢ = 1,...,7). See [Shl, Sect. 4]. Assume first that £ < n. The
global Rankin-Selberg integrals for SOg01 XGL,, can be applied for 7®7, where
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z = (z1,...,2r) € C" and 7, is the Eisenstein series on GLy(A) induced from
7i|det-|** ® --- ® T|det-|*~. The Euler product expansion for the integrals is
exactly the same as in the case we take a cusp form on GL,(A). The global
functional equation of the Rankin-Selberg integrals implies that for ¢ < j and
Re(z; — 2;) > 0,

(0.11) ¥(Too ® Tr001 8, Poo) || V(Fy ® Tor8,90) = L.

v<oo
(Here and below, we may interpret the infinite product as the finite product
of local gamma. factors over all places where not all data are unramified, times
the quotient of the corresponding partial L functions.at s and at 1 — s.) Here
¥(Foo @ Tz,001 8, Yoo) is the product of ¥(7, ® 7,4, 8,1, over all archimedean v.
Of course, we have, fori=1,...,r,

(012) 7(7~r00®’+’i,00)s+zia1/)oo)’y(7r®7-i78+ziaw) H ’Y(%V®7’:‘i,ll13+zi7¢l/) =1

PEITY
v< oo

Since, for finite v # vy, 7, and 75, are unramified, we have

(0'13) 7(%11@”7::,1/’3’1/)1/) = H'Y(%u@?fi,ms‘i’ ziﬂ/’u)-

i=1

From [S2], we have

-
(0'14) '7(7?00 ® ?z,ooa S, 1/)00) = H’Y(%oo ® ?i,ooa s+ 2, "/Joo)

i=1

We conclude from (0.11)—(0.14) that (for £ < n)

r
(015) 7(W®Fz,l’oasa 1/1) = H’Y(W®Ti,3+2i, Tl’)
i=1
It is clear that the L.h.s. of (0.15) is meromorphic in (¢7*1,...,¢7 %, ¢”°) and we
can substitute z = (0,...,0) to get

(0.16) yr®1,s9)=[[1rensv).

i=1
Now assume that £ > n. We repeat the trick we used before. Let p,..., u; be,
say, unramified characters of F*, such that n -+t > ¢, and consider, as before,
[ T1® @7 @1 ®- - ® pe. Then by (0.16), we have

Y yenny LT T3 PPN

r t
(0.17) v @7, 8,9) = [[v(r@7,5,9) [[v(r ® mi, 5,9).

i=1 i=1
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By Theorem 2,

t
(018) ’7(7‘-@7/’3’ 1/}) =’Y(7T®7', 31"/’)1—[7(7"@”57311/})'

i=1

From (0.16) and (0.17) we conclude that

(0.19) y(mers,p)=][rir@mn, s

i=1

for £ > n as well, and hence for all £,n. This completes the proof of Theorem 3.
[ |

The gamma factor is defined as a proportionality factor of a functional equation

v(m x 7, 8,)
'Y(Ta A2’ 25 -1, ¢)

(0.20) AW, &,0) = AW, &,,).
Here W is in the Whittaker model W (w,¢) of = with respect to 9, & 5 is a
section in p,,, the representation of SOz, (F) (split) induced from the Siegel
parabolic subgroup and the representation 7 ® |det-|*~/2 (normalized induc-
tion). A is a certain bilinear form and A is obtained from A by applying an
intertwining operator to &5 y(7,A%2s — 1,4) is the local coefficient of
Shahidi [Sh2). The precise definitions are recalled in Section 1. The proof of
Theorem 2 is by directly proving (0.11) as an identity with y(7 x 7,s,9) re-
placed by v(m x u,s,¢¥)v(x x 7', 8,¢). The proof is long and very technical. It
is in the same spirit as the other cases of multiplicativity mentioned before, but
the calculations and specific tricks are different. For example, we have to use
the multiplicativity of the Shahidi local coefficient. There are many places in the
proof where we have to justify the passage from one local integral to another,
after performing a formal manipulation. A typical justification consists of es-
tablishing a domain of absolute convergence of a multiple integral and also of
a calculation of this integral for a special substitution. We will defer all these
calculations to the last section of this paper. Finally, let us establish the main
notation for this paper.

F' = local nonarchimedean field, with residue field of ¢ elements, prime ideal

P and ring of integers O.
1
1 .
Im = . (m X m matrix).
1
SO, = {g € SL,, I tg.]mg = Jm}
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G¢= SOa41(F).
Hy, = SO (F).

a
For a € GLy(F), denote a* = Jy'a=!J; and & = ( 1 ) . For a subgroup
a*

B C GLy(F),let B={b|be B}.

Ag = diagonal subgroup of GL(F).

Z¢ = standard maximal unipotent subgroup of GL,(F).

N; = standard maximal unipotent subgroup of G,. For a matrix
T € Mpxo(F), let 2’ = —Jg'zJ,.
Siegel parabolic subgroup of H,. Its Levi decomposition is

I

@n

Qn =L, xU,.

L= {m(@) = (* . ) 12 € GLa(F).

Un = {u(z) = (I" ;’;) |z =2},

U= @)= ("

For a subgroup B C GLy,(F), we denote m(B) = {m(b) | b € GL,(F)}.
V,, = standard maximal unipotent subgroup of H,. V,, = m(Z,)U,.

|z =1}

R, = standard parabolic subgroup of H,, which preserves a k-dimensional
isotropic subspace. Levi decomposition: Ry = M(Ry) x U(Rg) (Rn =
Qn)-
Py ,._, = standard parabolic subgroup of GLn, of type (k,n—k),k=1,...,n—1
For ¢ < n, we denote
r=n—£{-1

and i, denotes the embedding of G in H,, given by

A B
. A B
m(G):{ I, €H,| €o = },
17 f4 (C 2 D) (C D) 0 = €0

where eq is the column vector in F26+2, with 1 at its £+ 1 coordinate, —1 at its
¢ + 2 coordinate and zero elsewhere. For £ > n, j, ¢ denotes the embedding of
H, in G, given by

j ((A B)) o ?
n,t = 2(8—n)+1 .
C D c D
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F™ = gpace of row vectors of dimension n over F.
F,, = space of column vectors of dimension n over F.
1) = a nontrivial character of F.- We let ¢ denote the standard non-
degenerate character it defines on Z,,, N, V..

Given a representation 7, which admits a unique Whittaker model with respect
to a character 6, we denote this Whittaker model by W(x,8). Induction of
representations is assumed to be in normalized form. For a representation 7, we
denote by V, a vector space realization of the action of . If 7 has a central
character, we denote it by wy.

1. Definition of y(r x 7, 8,v)

We recall, in this section, the definition of the gamma factor. Let = and 7 be
irreducible, generic representations of G; and GL,, (F) respectively. For s € C, let
Ts = T®|det- |"1/ 2, and consider p, s = Indg: 75. We realize 7 in its Whittaker
model W (7,1 ~1). The elements of V,,_, are smooth functions &, , on Hy,, which
take values in W (7,9 ~1), and regarding &, , as a function on H, X GLy(F),

& o(m(a)u(b)h, z) = |deta|*t"~D/%¢, (h,za), h€ Hp, z € GLy(F).

Put f¢ ,(h) = & 4(h,I;). The integrals defined in [S1], for W € W (m,¢) and
&5 € V,, ,, which are absolutely convergent in a right half plane and are rational
functions in ¢~?, are as follows.

CASE ¢ < n:
AW &)= [ W@ [ e @Benien(o)val@)azds.
NG, X
Here
( [Ie41
L r=n—£—1even,
I, !
\ Ips
ﬂl,n = ﬁ (It 1
L L  rodd,
1
L \ I,
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7(8,11) — {T=’TI(8 :;) cH,

ve er(£+1)(F)}a

CASE £ > n:
AW = [ [ W), (s
Va\Hy Y X(n,py
Here A
Xng = { (I; Ie_n) yE M(l—n)xn(F)}'
Let

In even
I, , n ev
Wp = I, 1
Ign_z y N odd
I, 1

and consider the intertwining operator M (wpy, &, 5) of p, s corresponding to wy,.
In [S1] we also consider A(W, &, ;) obtained (roughly) from A(W, &, ;) by applying
the intertwining operator to £, ;. These are defined as follows

CASE £ < n,n even:

X(W’gT’S)z/N\G W(g) Y“’") M(wmg‘r,s)(fﬂl,niﬂ,n(g)ab;,n)"/}a(f)dfdg-

Here by, = diag(1,-1,1-1,...,1,-1).

CASE £ < n,n odd:

AW = [ W) [, 61 s@enmleenlion(o), 1) @) dsdy.
NG X
Here
g:',l—s(h’ )= M('wn,{.r,s)(h“’“, bz,nc‘)’
where
In—l
1 Wy -1
Wp = 1 y W =wy hwy,,
In—l

bl,n =dlag(1’ _1’1’_1a"'y—1,1). <I£+1 -1 ) 3
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r>2,
r=90,1,
( (Iri2
Ir—l
Ir—l ’
Iy
I
1
Nen = < 1
Ir—l
Ir—l
1
1
I
\ I2m

CASE £ > n,n even:

Isr. J. Math.

r odd, r > 3,

, reven, r > 2,

r=0,1.

AW, &) = / /_ W (i (h) M (7.0}, b5 AT,
Vo\H, JX g

CASE £ > n,n odd:

AW,e,,) = / /_ W (e T e(1)m.e) M (i, Er.5) (B9, br) AR
Va\Hy, VX (0

Here

The functional equation asserts that there is a rational function in ¢—°

I,

An ¢ = -1 jn,e(wn)a

b, = diag(1,-1,1,-1,...),

_(In
en = ( —u-n> |

(7 x 7,8,%), such that

y

F(”T XT,8, w)A(W’ f'r,s) = Z(W’ €‘r,s)7
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for all W € W{r,v) and all holomorphic sections &, 5.
Let us specify the local coefficient. Consider the Whittaker model of p, ; given
by the following Jacquet integrals:

(1.1)
[ & s(wytu(@)h, Dp(2n_1,1)dz, n even,
In—l v ' Q Y
WEr,s(h) = féTvs(w;I 0 1 (; 2/ h7 I)¢(vn_1)dvdy, n Odd’
l In—l

In the first case, x varies over {e € M,,(F) | e = €'}, and in the second case,
y varies over {e € M,,_1(F) | e = €¢’}. These integrals converge absolutely for
Re(s) > 0 and have a holomorphic continuation to the whole plane, which defines
the Whittaker model for p, ; with respect to V,, and the character

(1.2)

z oz Y(ziz+ 223+ + Zno1n — Tn_1,1), n even,
0 =z Y(z12+ 223+ -+ Zn—21n-1 — Zn—1,n + Tn—1,1), 71 odd.

Let

e -5 = M(wn,&; 5)-
This is a section in the representation induced from 7* ® |det .|'/2~% to H,,. The
induction is from the parabolic subgroup @, if n is even, and from the parabolic
subgroup w,Q,w;! if n is odd. 7*(m) = 7(m*). Denote this representation by

pr+1-s. As for p. 4, the following integrals define the Whittaker model of p,- 1
with respect to the character (1.2),

J &1 s(wnu(@)h, by )p(@n_11)ds,  neven,
W: (h)y={73" b
Creis J &1 s(wnu(z)h, B ) ¥~ H@no11)de, 7 odd.

The Shahidi local coefficient (7, A%, 2s — 1,) is defined through the functional
equation

(1.3) ¥ A% 25 = L)W () =W, ()

and we define y(m x 7,s,%) by

__ax1s9)
(1.4) I'{r x1,8,9%)= AR 1)
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2. Two realizations of p,, for 7 = Indgf’"(F) w7

1,n—1
Let p be a quasicharacter of F* and 7' an admissible, finitely generated rep-
resentation of GL,,_;(F), such that 7" admits a unique Whittaker model (thus

y(m x 7', 5,9) and y(r', A2, 5,¢) are defined). We think of the elements of V; as
smooth function f(g;b) on GLyn(F) x GLn_1(F), such that

f( (1 In”_1> g;b) = f(g;b),

a 0Y, ) L™ .
f((() c)g,b)_ | det c|1/2 u(a)f(g;bc); a€ F*, c€ GLn_1(F).

(2.1)

The function m +— f(g;m) lies in W(r',4~!). In a similar way, we consider the
elements of V,,_ , as smooth functions on Hy, X GLy(F) X GLp-1(F), F(h,r,m),
which satisfy

F(uh,r,b) = F(h,r,b), u€ Uy,
(2.2) F(m(a)h,r,b) = F(h,ra,b), a € GL,(F),

F(h, <g Z) T, b) = “(a)‘als+n—§/2l det C|s+(n_3)/2F(h, r, bc).

The function b~ F(h,r,b) lies in W(r',9~!). We have the isomorphism

(2.3) Prs = Indg{‘ (us ® Pr’,s)
where
pa(t) = p(t)[t|*~ /2

(s 5 is defined on H,_, similar to p; s on H,.) We realize the elements of the
r.h.s. of (2.3) as smooth functions ¢(h, h’,b) on Hy X Hy_1 X GLp_1(F), such
that

d)(yha hlvb) = ¢(ha hlab)a ye€ U(Rl)a

T
"’(( " )h’h"b) = ()|~ g(h, W' I, b),
-1

z € F*, hy € Hyq,
(24)  ¢(h,ub',b) = ¢(h,k',b), u€U(Qn-1) = Un-1,
d(h, m(a)h’,b) = |det a|**™~3/2¢(h k' ba), a € GLn_1(F).
The function b — ¢(h, k', b) lies in W(7',4™1).



Vol. 120, 2000 GAMMA FACTORS FOR 809441 XGL,, 523

The isomorphism (2.3) in terms of F' and ¢, which satisfy (2.2) and (2.4)
respectively, is given by
¢+ Fy, where

(25) F¢(h, r, b) = ¢(m(r)h, Ign_g,b).

Now let us compose Fy with the Whittaker functional on 7,

(2.6) <p¢(h,r)=/F Fy(h,wyp (I"‘l i)r,ln_l)d)(zn_l)dz.

I
Wk = (In—k k) .

The integral (2.6) might not converge. To get convergence, we replace u(z) by
w(z)|z|¢ and 7/(g) by 7/(g)|detg|~¢ for Re(¢) large enough. Indeed, we have
the following lemma whose proof is that of the analogous result for the similar

For k < m, we denote

intertwining integral.

LEMMA 2.1: There is a positive number (y, which depends on 7" and p only,
such that the integral (2.6) converges absolutely for Re(¢) > (o, all ¢ and all s.

To lighten our notation we do not denote ¢,: , , ¢ but rather just ¢. Finally,
define

(2.7) Fo(h) = pg(h, I).
Note that ¢4 is a &, 5 and fy is an f¢,_, in the notation of Section 1. Now we are

ready to substitute gy for &, o in A(W, &, ;).

3. Proof of Theorem 2incaser=n—-£-12>1

We prove directly the identity

y(r x g, s+ () y(n x 7' s — ¢, ¢) AW W
V! X py s = 5,9)7(7, A2, 2(s =€) — 1, 9) (W, 05) = AW, 04)

in case r > 1.

(3.1)

The factor ¥(7' x g,s — %) is the gamma factor for GL,_; X GLj, which also
equals the corresponding local coefficient of Shahidi.
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a. DIRECT SUBSTITUTION OF @4 IN A(W,py). This results in

AW, pg) = /N ) /7(“.) /F #(m(wrn (I"'l f) )

(3.2) ZBenten(9)s fon—2, In—1)¥(2n—1)%a(Z)dzdZdg.

LEMMA 3.1: The integral (3.2) converges absolutely as a triple integral in a
domain of the form

(3.3) A < Re(¢) < Re(s) + B,
where the constants A, B depend only on w, 7" and p.

The lemma is proved in Section 6.a.

b. LEMMA 3.2: We have, in the domain (3.3),

AW, 04) =/Nl\Gl W(g) /7‘““*” /F2M¢( (111 Tn—z 1)

* v

(3.4) m(w1,n)Be,n, Titn—1(9), In—l)*/)(vn—l)%(f)d(v, z,g)-

Here v, is adapted to xEnn,

Proof: By a simple change of variables, we may replace m <I"‘1 i) Z by

m (I"_l ;) in (3.2) (in the domain (3.3)). Write T = Z'Z", where

£+1 r—1 1

0 vh 0

and



Vol. 120, 2000 GAMMA FACTORS FOR SOg¢41 XGLy, 525

We have
0 vy wus
m(wy ) Tmw ) =g 0 0 o],
0 0 O
up 0 0
m(w1 )T mwr )P =uf vy 0 0],
0 v W
In—l z -1 _ 1
Win ( 1) wl,n = (Z In—l) 3
1
(3-5) m(wl,n)it,n(g)m(wl,n)_l = il,nwl(g) .
1

Using (3.5), (2.4) (and the fact that 8, commutes with i, ,(g)), we get (3.4)

1
from (3.2). Note that if r > 1 then the conjugation of | v Ip_2 by
x v 1
1

ien—-1(9) does not affect Y(vy—1). If r = 1, we have T = 7", &' =

1
Isn, and ¥(zn—_1)¥e(F) becomes Y(vp_1 — v,). This character is preserved by
1
( ien-1(9) ) (n—£-1=1). [
1

The integral (3.4) converges absolutely in the domain (3.3). If we consider its
dZdg integration (on Ng\Gg x4 1)) first, we recognize a local integral for
G¢ x GL,_1(F) and 7 x 7'. (There is a missing translation by B¢ n—1.)

¢. APPLYING THE FUNCTIONAL EQUATION FOR 7 x 7/. A formal application
of this functional equation to the d(Z, g) integration in (3.4) gives

Y x 75 —(9)
7(TIaA2v2(3 - C) ~1 "/) W 90 /Fz,. 2 /Nc\Gt W / (ent)

1
(3.6) ¢~( (v Ipn_2 ) m(wl,n)ﬂl,mTae,n—1ie,n-1(g),In-1>

* v 1

blon-)9V" (@)dEdgdo.
Let us first explain the notation in (3.6). Put, for h € H,,

dn(R,b) = (h,1,b), K € Hn_y, b€ GLu_1(F),
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¢n, lies in Vpr,"_c. Then
~ M(wn—1,9n)(R',b;,,_b*) n odd
! _ n ) 1Yin—1 ’ ]
¢~ (h, b, b) = {M('w,,_l,¢h)(h“’"—1,bzn_1b*), n even;
_ Izn_z, n Odd,
Wn=1=\ memo1mlen—1)Byazl, n even.

See Section 1 for the notation. Now let us explain how to interpret (3.6). In
Section 6.b we prove

LEMMA 3.3: The integral (3.6) converges absolutely (as a multiple integral) in
a domain of the form

(3.7) A < Re(s) < Re(¢) + B,
where Z, B are constants which depend only on 7,7’ and p.

The domains (3.3) and (3.7) might be disjoint. We follow the same reasoning
as in [S1, Sect. 11]. The integral (3.6), which we denote by B(W,py), has a
meromorphic continuation to the whole plane and is a rational function in ¢—*
(fix ¢). (This follows from [S1, 8.4] since the integral (3.6) clearly satisfies the
equivariance property (1.3.2) of [S1].) By [S1, 8.3], B(W, ;) is proportional
to A(W, ) by a meromorphic function of s (and actually of ¢ as well.) More
precisely, we have

C(Wa T” §— C? w)
(', A%,2(s - ¢) - 1, 9)
where c(7, 7', x, %) is rational in ¢~%. To find ¢, it is enough to compute A(W, p4)

and B(W, @g4) for a special substitution of W and ¢. This is shown in Section
6.c and we, of course, get

AW, p4) = B(W, pg)

LEMMA 3.4:

c(m 1, s= () =v(r x 1,8 - ().
d. UNnroLDING B(W,ps) BACK. We unfold B(W,py4) “back” from (3.6) to
an integral similar to (3.2). This we do in the domain (3.7), where the rational
function B(W, ¢4) is represented by the convergent integral (3.6).

LEMMA 3.5: We have, in the domain (3.7),

B(W, ¢4) = / W) [
NGy x

(38) L a(m(wl,n (Iﬂ“l i))ffst,nil,n (g))IZn—2yIn—1)

(29 (2)d(2, T, g).
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Here ¢~ (h, 1, b) dd
~ ’ _ ~ 3 ’b > 1 044G,
9{’(}% h sb) - {qu(hwn, K, b), n even,

he H,,h € H,_,,b € GL,,_{(F) and
Bens n odd,

Opn = _
& =) mwy )t Qg n_1 (m(w1,n)Bem)*", n even.

1

Proof: If n is odd, then g,y = Iz,—g and (3.8) is obtained from (3.6) by
reversing the steps which led from (3.2) to (3.4). Assume that n is even. We

have
4 Il
0 1
Ir—2
0 1 Cr >3
1 0 -
Ir—2
1 0
I,
a‘Z’,‘l‘_’l =
I,
1
: , r=2,
1
1
1,
N Topo, r = la.

Using this and some of the steps which led from (3.2) to (3.4), we see that

swr = [ wa [,
Fon_2 JNN\G, X

1 1 1
¢~ ( Fn-t v Ian2 oy
1 x v 1

1 1
(note that in case r > 1, conjugation of | v Iznl_z by Oy
x v 1 1
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takes v,_1 to vy,)

:([;W_Z‘A;\Gltv19>[;“m_” 3 (1 - 1) (i in 2 1)

* v

~m(w1,0)0enien(9); Ton—2, In—1)¢(vn_1)1/z;1(‘a?)dvdfdg.

Note that ¢ satisfies (2.4) with the following changes. In the second property
(of (2.4)) replace s by s + (. In the fourth property replace s by 1 — (s — ().
In the fifth property replace W (r’,1~1) by W (7 *,4~1) in case n is odd and by
W(r'*,9"*) in case n is even, where

1 = *
1 Z9
v . — Y 2 2sa),
1 zp2
1

If r =1, ¥* = ¢. In detail, we have

d(yh, b, b) = ¢(h,h',b), y € U(RL),

T
¢ (( ho ) h,h',b) = p(@)la| = E (h, W'hg,b),
.'II—]'

J:EF*’ 6€Hn—17

¢(h’a nh,v b) = ¢(h7 h,a b)a u € U(Qn—l) = Un—la
d(h, m(a)h',b) = | deta |\~ =3/24(h 1! ba), a € GL,_1(F).

The function b > @(h, k', b) lies in W (r'*,4~1) in case n is odd and in W (1", ¢*)
in case n is even.

Thus we can use (in the reverse direction) the set of the steps which led from
(3.2) to (3.4) to conclude (3.8). |

e. APPLICATION OF SHAHIDI'S FUNCTIONAL EQUATION FOR 7' x u. By the
definition of Fy (see (2.5)), we rewrite (3.8) in the domain (3.3) as

. I,_
B =[  wa [ [ FEminn (" 7)1
N\G: x4 JF,
(3.9) P(n-)9$" " (F)dzdTdg.
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At this point we use Shahidi’s functional equation and local coeficient for
GLj—; x GL;. It is defined as follows. Let o be an irreducible generic rep-
resentation of GL,_;(F) and 1) a quasi-character of F*. Put n,(z) = n(z)|z}*~2
and o,(r) = o(r)| det r|*~2. Consider the representation

La(F)
Tp,0,81,52 = Indp,

Ln—1 nsl+1l‘;1 ®032+%h1'

Assume that o is realized in its standard Whittaker model with respect to ¢ 1.
We think of an element e of 7, 5,5, a8 a function on GL,(F) x GL,_1(F),
e(m,r) such that 7 = e(m, 7) is in W{o,¢~1). Consider the intertwining operator

given by
~ Invl z
e(m,r) = e(wpn m,r)dz
Fn.—-l 1

and the following Whittaker models:

We(m) = /Fn 1 e(win (I"_l i) m, I—1))¥(2n—1)dz,

Wx(m) = /F E(tvf,,‘, (1 Int_l) m,In_1>1/;(t1)dt.

These are models with respect to the character =1 (of Z,). We consider the
local coefficient ¢y (15, +(n—1)/2 ® Ts;4n/2-1) defined by

(310) Cy (7’31+(n—1)/2 ® 032+n/2-—1)WE(m) = We(m)-

We have, by the multiplicativity of local coefficients,
(3.11)

7(r, A%, 25 = 1,9) = ey (Botcrn-1)/2 @ (7) % (g )ny) V(T A2 2(s = ¢) — 1,9).
By (3.10), we get from (3.9)

B(W,¢4) = ey (Hatctn-1)/2 ® (T (s=¢)4n/2) / W) /—(e " /
N\Ge x4 J

28]
(¢>(xamn<g) wiz(t ) ( S )1)
r—1

(3.12) P(t)p$S D" (z)dtdzdg.

Here

(313)  (Fp(hm,r) = /F F‘;(h, Wi (I"-l : ) m, r)dz,
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the composition of F~ with the intertwining operator on 7. Of course we take
(3.13) in the sense of analytic continuation. In Section 6.d we prove

LEMMA 3.6: The integral (3.12) converges absolutely (as a multiple integral) in
a domain of the form

~Re(¢) + L <Re(s) <Re(¢)+ L',
(3.14) Re(s) < M
for some constants L, L', M which depend only on w, 7" and p.

As in Lemma 3.4, we conclude that there is a meromorphic function
d(m,,5,(, 1) such that equality (3.12) holds (as meromorphic functions) with
the local coefficient replaced by d(w,,s,(, '), and we prove in Section 6.e

LEMMA 3.7:

d(?l’, T, 8, Ca TP) = C¢(Hs+<+(n—1)/2 X (T,)t(s_<)+n/2)~
We proved that

y(m x 1',8 = ¢, )
C¢(ﬂs+(+(n—l)/2 X (T,):(s—()+n/2)'7('rl’ A%L2(s-¢) - L9)

ie., by (3.11)

AW, p4) = C(W, 9),

FY(W X T’,S - Cv ’d))
'Y(T) A21 2(3 - C) -1, ¢)
Here C(W, ¢) is the integral on the r.h.s. of (3.12).

A(Wv (,04)) = C(W, ¢)

f. LEMMA 3.8: In the domain (3.14), we have

cwa=[ W) [ew [ (z«se,nn,n@),w;;z

I s
(3.15) (-nt ,In_1> YD (@) dadzdg.
Ir—-l
1 0 0 = O
i 0 0 =
Here E, is the subgroup of matrices of the form 1 0 O0]in
Iy O
1

1 0 =
Gy; Z is the subgroup of matrices of the form ( I, 0 ) in GL,,(F).
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Proof: Write

1 : 1 ¢ 0 1 0 "
( I ) = Ie_1 0 Ig_l 0 = Z’ . Z”.
n-1 In——e In—l

Let Z’ and Z” be the corresponding subgroups. Let

1 z *
E, = {e(z) = Ip v 2| €Gy|z€ er_l},
1
Ef ={e(z) | z1 = =21 = 0}.
We have
N¢=E, -N,_,, E,=ZE}.
1
(Here N;_; is already embedded as Ny_1 inside Gy; Z' is considered

1
as a subgroup of GLy(F') as well as a subgroup of GL,(F) and i, ,(%3') = m(2’).)
We have

m(zl)y(lyn)m(zl)—l — X'(e»"),
d}a(m(zl)fm(zl)_l) = 1o (T),

d(m(2)Im(2')™1) = dz,

m(2')0g.n = Senm(?’),

and so
cw,é) = [ wo [, [ & (z«se,m,n(g),w;,iz”
E/N¢_1\Ge x "
Ioy s
(3.16) (=1)n-1 Sy | -9V (T)d2" dzdyg.
Ir—l
Write
2" = zyz,
where
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I,
1
_ I,
We have for 7 = )
v uv |I,
0 0 < 1
0 0 < I,

Yo (mlz)7m(57)) = Yo (@9 (Wor,a).

Thus from (3.16), we get

W)= [ WO [ [ [ o mica@ it

Ipp
(“1)"—1 vIn—l))
Ir—l

(3.17) " @)D" (g1 ) dadydzdg.

Note that v remains the same for T and for m(z,)Tm(z,)~!. We have

6Z;m(zy)6l,n = {m(zy), £ even

Uy, £ odd
where
r 1 -1 1
A AN AN
0 y 0 -1
Uy =u 0 0 0 0
0 0 0 —y
0 0 0 0

We also have
Uy, £ even,

-1 —
Ogntyden = {m(zy), £ odd.
Thus, for £ even, we have in (3.17)
= . (1 —_ -1 .
(F3) (a:m(zy)ég,,.u,,,(g), .. ) = (Fp) (u_yzu_yét,ﬂu_ym(zy)zg,n(g), . .),

and for £ odd,

(Fd",) (Em(zy)‘sl,nil,n(g)y .. ) = (F';) (u—yfu:;al,nm(z—y)uyit,n (g): oy ) .
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Note that
1 0 y 0 3
I,y 0 O 0
u_ym(zy) = mzy)u_y =tgn 1 0 -y
I 0
1

We have (with previous notation)

I, © * v u v+---
u_yTuzl =m 1 —y(vpa..v11) |T|0 O u .
Y I, 00 o

Thus
cowpy= [ w) [, [ F|wenioalo)wibe
E(N,_1\G, X Jz
Iy
(”‘1)1‘—1 aIn—I
I,
(3.18) 0 (Z)dzdzdg. B

A
*
g. FACTORING INTEGRATION THROUGH(* I, > .
-1

LEMMA 3.9: In the domain (3.14), we have

oo (L, w2}

() +e 2d§d't) : / / (Fp) (Téz,nie,n(g),wl" n?
X Jgz ’

8] »
(3.19) ( (-p=? ) ,In_l) P (2)d=dzdy.
-1

I

Here C, is the subgroup * of GLy(F) and the dg integration of (3.19)
* Iy

should be understood in the sense of Iwasawa decomposition. (Recall that Cy is
the image of Cy in Gy as explained in the notation.)

Proof: Factor the dg integration (in the above sense) in (3.18) through Cy.
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0
I

—~ . Toys
(F&) §5£,ni£,n(ét,yg)s winz (_l)n_l ’ In-l =
I‘r—l

— I
P Y2(ES) | Toenien(9), wine (-1)n-1 A
Ir—l

Write ¢y, = (; ) We have

and the lemma follows. [}

h. APPLICATION OF THE FUNCTIONAL EQUATION FOR 7 x p. The dyd*t
integration in (3.19) is a local integral for 7 x p (with s replaced by s 4+ (). A
formal application of the functional equation in this case yields (going back to
Section e)

'7(’" X U, s + 4,11))’7(77 X T’,S - Cﬂﬁ)
(8.20) 30, A%.35 — 1,9)

where

. t _
D(W, ¢) =[ (/ /_ W(Cl,ele,e( t‘1> a1,e9)p"(t)
C(E(N;_1\G: *JX (1)

L 2‘(“’*C)dﬁd“t) ' /—(z " / (Fp) (f‘se,nie,n(g)’ Wiz
X" zZ

Tort s
(-1)»-1 ooy | 00V (T)dzdzdy.
Ir—-l

1 I, 1
Recall that a; ¢ = Ine—y -1 and ¢1 0 = ( —I )
) I, -1

In Section 6.f, we prove

LEMMA 3.10: The integral (3.20) converges absolutely in a domain of the form
(3.21) Re(s)+ R<Re({) <T
where the constants R, T depend only on m,7’ and p.

i. UNFOLDING D(W, ¢) BACK. We unfold D(W, ¢) “back” to an integral similar
to (3.18).
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LEMMA 3.11: In the domain (3.21), we have

pw,e) = [ W) [ (F3)|Toumien(ess),wile
E/Ne_\Gy Xz
I£+l n—1
(3.22) (-1)"1! Iy | 90D (T)d2dTdg.
Ir—l

1
Here €y = al,gél,g = ( —Iu_l ) .
1

Proof: As in Lemma 3.9, we have

pw.9) = [ [ Waew) [, ()| enien(o)uihe
X(l,l) X( ’n)XZ

X1,0EeNi—1\Ge

I£+1 n—1
(=1)n? Jaoy | -9V (T)dydedzdg.
In—l

1
We have, for y = ,
e have, for g m(y Ie_1>
1 0 0 -y o0
I,y 0 0 -y
(3.23) e; ‘e = 1 0 o0 |=7
I, 0
1
Note that

0 -y 0
ig,n(il) =u (0 0 —y) and i[yn(ﬂ)(sg,n = 5g’nig,n(:l7).

0 0 0
Thus
(3.24) () (@8eniem(9)s - ) = (Fy) (ien@Funien(9), - )-
1 -1 1 r
N N
" v b c }r
We have for T =7 0 0 0 v |31
o o o v |}E1
0 0 0 v 1

i @)fie,n (37) =
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1 0 0 —yv v v b c—uny'v —v'yn
Iy, 0 -y} {0 0O v
(325) m 1 o0 J%lo oo v
I, 0 00 v,

Using (3.23)—(3.25), we get

Dw.g) = [ | e [,
X1,0BtNe1\Ge J Fpy X"xz

(F;‘s) (il,n (mfil,n (@_lée,nil,n (gg)a .. ) = W(eeﬂg)

\/%(1,¢)E1N4-1\Ge Fe_y

—~ Tota
/—(t.n) (FJ,) (Tél,nie,n (¥9), w;,llz (_1)"—1
X xZ Ir—l

1 0 0 —yv
— / n-—
Loy 0 —yvy ,In—1> D (F) dzdzdydg

10
I
=/_ W (eeyg) /_l (F) Tot,nit,n (59), W L2
Xa,00BtNe-1\G¢ JFey X 7

I .
(-)m! ooy | - 9D (F)dzdzdydg.
Ir—n

1 0 =2
For the last equality, if z = I, 0 |, we change variable z — z + y'v'.
I,
1 Iy 0 yvy
'
Note also that wj} Lo (1) ygl Win = 1 IO . Now we
! r
I, 1

go on to get

/_ Wie) [_,., (F3)| Zoemien(9), winz
X,0Ne-1\G: XYz

Ippa
(_1)n—1 1Iﬂ—1
Ir—l

Note that egf(lyl)ee‘l = E;. Changing g to e;g we get (3.22). ]

0 (T)dzdzdg.
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It remains to show (in the domain (3.21)) that the Lh.s. of (3.20) as written
in (3.22) is actually A(W, ¢4). This we do now. Note that in the domain (3.24)
all the following manipulations in the integral (3.22) are justified.

LEMMA 3.12: We have
- - - wh—1 * *
(3.26) Fy(m(wip)h, In, b) = Far(g)(m(wip)h)s  In, b} n_1b%),

where M()(h, Ion—2,5) = [z $(@w; 'k, Ion_s, b)du.

Proof: The Lhs. of (3.26) is, by (3.13),

w:"l
AR T e
"= n—1 n-—
1 n—1
=L ¢(ﬂ w;il h¥n aI2n—2v b;’n_lb*)dﬂ_
U, 1
1 n—1
:FM(¢) <wﬂ wr:il h“n ’Izn—2bzn_1b*)
1
=Fpm(y) ((m(wl',,l,)h) s In, bz,,,_lb*). ]

Thus, (3.22) equals

/ W [,
E(N;_1\Gy X 2
Ip wi™!
Fp(g) Km(wf}.z : (=1t )Tvé,n)
Ir—l

(3:27) ie,n(g),f,.,bz,n_ll S (7) dedzdy

where 7, . = 8¢.n * Ge,n(er)-
Ipyq
Note that conjugation of Z by m (-)n-t changes
Ir—l

¢¢(z_1)n_l(f) to 94(Z). Perform the conjugation by m(w; 1). We get, writing
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Yy
v ) , where v; € My ¢(F),v € My xo(F),

!
1
0 v; 0
/ W(g)/FM(¢) (ﬂ vy n
E(N:-1\G, 0 v 0
1

I, wn”
(3.28) -m ( I 1) ’Yt,n) ie,n(g)’ I, b;,n—l} ’l/la(f)d(- ) )

8]

il

&l
TN
oo S
oo e
(=4

z
where
Iy
(3.29) Yo = m(wih- (~1)m-1 Ay
Ir—l
0 v; O
Ifnisoddthenw | 0 0 wv; | lies in the Levi part of Py~ and
0 0 0

0 vy O 1
Fue (ﬁ 0 0 v h’Imb) = Fug) (h, v I ,b).
0 0 0 0 0 L

Note that in this case,

o N o
N———
[3
2

If n is even, then

and

0 vp 0\ \“ 1
FM(¢)((E 0 0 v ) h,In,b>=FM(¢)<h, v I ,b).
0 0 0 0 0 I
) ) penien(9),

Thus (3.28) equals, putting pe, = 'yz; ,

0 =2
/ Wi(g) /FM(qs)((ﬂ v oy
E(N¢_1\G: 0 v

~

o N o
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1
('Ul I, Il) ’bz,n—l)w(vr,l)d(“') z/E'zNz_l\Gl W(g)/

0 0

0
Frg) (m(wl,n) 7 (v
0

I, 0 wn
IZ 0 ’b;,n—l) ¢(1}r,g)d(' : .) = / W(g) \/_(l ») /
E/N,_;\Gq X

@ W
N o

wﬂ
I) llfl,nie,n(g)a Win

e\
o

1

“J: Ir 0 m
Fu(g) ((fm(%,n)) Henten(g), win I, 0 »bZ,n_1>
1

v@don o= [ we [ [P (f“'n'm,nu,n(g),wl,n

EyNi_1\G,
I, 0 u

(330) IZ 0 ’ bz,n—l) wa(f)d(vh T)dga
1

where i = m(wl,n)“’z then. We have
1
Ben =m -1, (Me,nm(een))*™, ifnis odd
I,
(3.31)
1
e =m I Ben, if n is even.
Ir—l

Assume that n is odd. Then (3.30) equals

/ W(g) /—(‘ " /FM(¢) ((fnt,nm(€t,n)) il,n (g),
E;N,_1\G, X
1 Ir 0 U1 I,-
( b* ) Win Il 0 —IZ ,In——1>
Ln—1 1 1

Wn
v @)do, Dy = [ W) [ ., [ Fueo| | #reamieen)
E¢yN;_1\G: X

0 (%%

I,
(3.32) ign(9),win ( I, 0 ) bz,n,In_l) 71 (Z)d(vy, T)dg.
1
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Now factor integration through E,N,_1\N;. Note that i,,(g) commutes with
Wn, M(Ee,n), M- We get (see [S1], p. 56) that (3.32) equals

/ W(g) /_(, " /FM(¢) (fne,nm(fe,n))“’nig,n(g),w1,n
NAGe X

(3:33) (’"‘1 i)bz,,,,zn_1>w(zn_1>-w;‘(f)dzdzdy=Z(W,w¢)-

This completes the proof of Theorem 2 in case n is odd (and r > 1). Assume
that n is even. Then (3.30) equals

— . 1
/ W(g) ./__(l ) /FM(¢>) (zﬁl,nzl,n(g), < b* ) Wi,n
E[Ng_l\Gg D. N Z,n—l

I, 0 v I,
Iy 0 o (281 ,I,,_l) Yo(T)d(vy, T)dg
1 1
=/ /—z / Frg) | Thenien(9), win
E,N; 1\G, X

Ir 0 v
Ie 0 b;,nv In—l) ¢a(§:‘)d(vl,§)dg.
1

Now factor, as before, integration through E,N,_1\N¢ to get

. I .
/ W(g) /_(t o /FM(¢) (mﬂl,nll,n(g)7w1,n< "0 ! i) be,mfn—l)
NA\G, X

(3:34) Ya(T)dzdZdg = A(w, py).

This completes the proof of Theorem 2, in case r > 1. ]

4. Proof of Theorem 2incaser= n—£—-1=0

Assume that £ = n — 1. We omit (in Section 6) the technical justifications as
they are easy repetitions of those needed for Section 3.

a. DIRECT SUBSTITUTION OF g4 IN A(W, ¢y). This is done as in the previous
case. We get (in a domain D of the form (3.3))

AW, 04) =/N,\G,W(g) /F"_l ¢(m(w1,n (In_l i))ie,n(g),

(4.1) Iy o, In—l) P(2n_1)dzdg.
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b. LEMMA 4.1: We have (in D)

(4.2) AW, py) = VoG W(g)p(m(w1,n)ien(g), fan-2, In—1)dg

e 0 y
Ve = 1 0 eGgieeZ,g .
e*
Proof: We have

qﬁ(m(wl,n) (In—l i))ha I2n—2»In—1) =

I,
olus - mlwnn) (270 3 )b Fona Ty

where

where u, = m(wyn)u (8 3,) m(w1,,)~}, and this gives

In_1 z *
¢<m(’w1,n)ie,n 1.7 haI2n—2>In—1)-
In—l

Using this in (4.1) we get

I,., z A,
AW =[ W(( 17 )g)qs(m(wl,n)u,n
N\Ge JFn-1 In—l
In—l z Az
(7))
In—l

=/ W(g)¢(m(w1,n)il,n(g)v Ipp_g, In—l)dg-
V\G.

In.y z A,
(A, is such that 1 2 € S02p,-1.) 1
In—l

¢. FACTORING INTEGRATION THROUGH H;. Since £ = n — 1, we can embed
Hg = SOgn__g(F) in Gg = SOzﬂ_l(F) by

(8 8)= (00
n—1, - .
C D C D
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Note that V; C Hy is indeed the standard unipotent subgroup of H,; and that

A B A B
1 further embeds as I, in H, = 803, (F), where conju-

C D C D
1

A B S .
c D . Therefore, factoring integration

gation by m(w. ) takes it to
in (4.2) through H, gives (in D)
(4.3)

= [ [ Wl 09 (@ )ien )b o) s

d. APPLYING THE FUNCTIONAL EQUATION FOR 7 X /. The inner dh-integral
in (4.3) is the local integral for m x 7/ on SO3y,_1 XGLy_;. Let us apply the local
functional equation, justifications being as in Section 3.c. We get (see Section 1)

y(m x 1,8 —¢,¢)
(7', A% 2(s — () — L)
(4.4)

/ / W (jnor,e(R)am=} 108~ (w1 nYien(9), b In_1)dhdg.
HN\G, JV\H;

B

AW, p4) =

Here, ¢~ is defined similarly to (3.6). Put, for h € H,,
¢h(hl’b) = ¢(h7 h’l’b)a h'/ € Hn—l, b € GLn—l(F)1

dp lies in V, e Then

n-—1

¢~ (h, D) = M(wn_1,6n) (K", b_1b").

We continue the calculation (in the domain of convergence D', of the form
(3.7)) of the integral on the r.h.s. of (4.4).

e. UNFOLDING B(W, p4) BACK. Denote by B(W,pg) the r.hs. of (4.4). We
have (in D')

1
B(W, p4) :/ W(jn—l,e(h)a::i,e!})d’( ( h )
HN\G, JV\H, 1

1

(45) m(w1,n)* it (9), Ln-, L1 ) dhdg
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where g(h, W,b) = ¢~ (h“’:-l,h’b), and then we get

B(W, (sz) = / W(aﬁ:% lg)a(m(wl,n)wz_liln (9), Izn-2, I"—l)dg

4

Ve\Ge
n— e In— z ne1 -
= oo o W@t (5§ )t o)
I3 ¢ n-
(4.6) In—2, In1 )0V (2 _1)dzdg

where
I n—2

(51:

In—2

f. APPLICATION OF SHAHIDI’S FUNCTIONAL EQUATION FOR 7’ x u. From
(4.6), we have

ne n—1- I, =z

B(W» (P¢) =/ W(an—},eg)/ Fg(él lll,n(g)vwl,n( ! 1) »In—l)
NG, Fn-1
w(—”u‘l(zn_l)dzdg.

As in Section 3.e, we have (see (3.12), (3.13))

B(W, p4) =¢y (s+¢+(n=1)/2 X (T)(s—¢)4ns2)’

. W(an=! / Fy (67 Vg ,w-1<1 t )
/I;I[\Gt ( n—.l)ig) Frn-1 ¢( 1 & (g) 1n I,
In—l
(47) ( (_1)n—1> aIn—l)’l/J(tl)dtdg'

Reasoning as before, we continue the calculation in a domain D” of the form
(3.14). Denote the integral in (4.7) by C(W, ¢). Using (3.11), we have

y(r x 7,5 = ()
“8) YA 26— 0 - 1L,9)

It is easy to check that in both cases (n even or odd), we have

AW, p4) = C(W, ¢).

(4.9) ﬂW@=AN\GW@@WWQMAwAA4m

(see (3.15) for notation).
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A
* o
g. FACTORING INTEGRATION THROUGH <* I ) . This gives
-1

- —. t 3+<_,;_
cwa=[ [ [ “‘”w(wu( t_l)g)ua)m

(4.10) F; (m(w;}l)igm(g),In,I,.“l)dyd*tdg.
h. APPLICATION OF THE FUNCTIONAL EQUATION FOR 7 X u.

’Y(ﬂ. X TI,S - C,T/’)’Y(ﬂ' X |4, 8 + va)
7(7-3 A2’ 2(3 - C) + 1,'¢)

P t _ 1
/, / n W(cLele,z( t—l)al,l)u 1(t)|t|5 (s+¢),
CeBeNe-1\Ge * I X

(4.11)  Fy(m(wi2)ien(9), In, Ino1)dyd*tdg.

A(Wv (,0¢) =

We continue, as before, in a domain D' of the form (3.21). Denote the integral
in (4.11) by D(W, ¢).

i. UNFOLDING D(W, ¢) BACK. Note that conjugation by a1 flips ¢ to ¢t~ and
takes

1 0 0 ¢ 0
1 A Il—l 0 0 Y
y= ( I ) to 1 0 O0]=e
Y 41 Iy 0
1

which is a general element of Ey, and clearly g — F‘;(m(w; i n(9), In, In_1) is
left invariant by e. Thus

D(W,(¢)= [_ | W(é1,e01,409)
Xa,0BtNe-1\Ge Y X1,

F&(m(wl—,flg)il,n(g)v I, In—l)dydg
- [ W (ceeg) Py (m(uih)ien(cg), I, n-1)dedg
X1,0EB(Ne-1\G, JE,

1
(ee = &1 4010 = ~Iy1 )
1

[ W (eag) F5mw )it (9), oy Tn-1)dg
X(1,0Ne-1\G:

[ WoFmtwidien(e), I u-i)dg
E¢N¢_1\G:
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s in (3.26) W (9)Farea) (m(w;,,‘.)”ﬁ" it n(ee0), In, b;_l) dg.
E¢N;_1\G,

We have .
wﬂ
n—1, - —
m(@) (e =m (7Y

Factoring integration through EeN;_1\Ng, we get

pwe=[ W [ Fuo ((m(w;,,‘,) (" 25) )w:iz,n(g),

(1 bt ) aIn—l) - ¢(t1)dtdg
n—1

= /N,\Gz W(g)/FM(d’)(itm(g), (1 - ;_1) Win (In—l i)’

In_l)w“l(zn_l)dzdg.

We have wy ,1, (1 b ) wy,, = b}, and hence
n-1

D(W:d’) = -/N\G W(g)/FM(¢) (il,n(g)awl,n (In—l i)b:ﬂ‘lﬂ—l)

Y(2n-1)dzdg
= A(W, pg).

This proves Theorem 2 in case r = 0.

5. Proof of Theorem 2incaser=n—-£—-1<0

Assume that £ > n (i.e. r < 0). We give the details briefly. The technical
justifications are similar in nature to those of Section 3 and even easier, so we
omit them.

Substitute pg in A(W, py) to get

AW, 0g) = /V . /Y W (@i e(1)) /F
(5.1) ) (m(wl’n (Ino—l i))h, Iop_2, Iﬂ_l) P(2n—-1)dzdZdh.

This integral converges absolutely in a domain D of type (3.3).
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We have
V(an-)W (Tjnalh) = W (@ine (”‘ (% %) h>>

with dZ7 = dZ’, and so factoring the dz-integration in (5.1) it becomes (in the
domain D)

(5.2) W (Zjn,e(h)p(m(win)h, Izn_a1,_, )dTdh

/m(z,,_l)Un\Hn X(n.0)

where m(Z,_1) = <m z 0 z2 € Zn_1 ¢- Factor the dh-integration in (5.2
01

through {m (Iny‘l 1) \y € F"‘l}, noting that h — ¢(m(wy1 )k, Izn—2, In—1)
is left-m (I"y_l 1) invariant. We get

/énU,,\Hn /W( (Iny_l : )A 'jn,e(h)) ¢(m(w1*")

T T Ig-n
(53) h, I2n—2a In—-l)d(ya z, r)dh

Here Z, = m(Zn_1 : { (I"y‘l 1) lve Fﬂ-l}).

Now factor integration in (5.3) through

We get
/ZnUan—l\Hn /Ft—n ‘/;,n—l\Hn—l ‘/Y(n—l,l)
In—l "
w(fj,._l,e(h')( 1 ) )
T Ipn
(5.4) - p{m{wr )b, B, In_1)dZdh drdh.

Note that ZnUan_l is a subgroup of H,,. Now apply the functional equation
for m x 7" (on SOg¢41 XGLp_1),

y(rx 7' s—¢ )
7(7-/, A2a 2(5 - C) - 1’ "/])

A(W3 (P¢)
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h ‘[ZnUan—l\Hn ‘/Ft—n ‘/"/n—l\Hn—l /-)'—(‘(n-l,t)
A
In—l
w é:_ijx]n 1e(h) },g 1 ) jn,f(h) :
r Ipp

(5.5) ¢~ (m(wy,n)h, b, In_1)dTdR' drdh.
The last integral converges in a domain D’ of the form
—Re(¢() + A<Re(s) <Re(()+B (A>0,B<0)

where A, B depend on 7, 7" and p and (5.5) is understood in the sense of analytic
continuation (equality of rational functions of ¢—*). Here

&~ (h, W) = M(wn-1, én) (K571, b5, _1b7)
for h € Hy, B’ € Hn_1, b € GLp—1(F) and ¢p(h',b) = ¢(h,h’,b). We continue

in the domain D’.
Note that
. % n-1 _ n-1 . hlw::}
371—1,2( )a’n—l,£ =Gy pdn—1,t

and

1
¢~ (m(wl,n)h, h/, I -1) = ¢~( ( h/w::i m(wl,n)ha IZn—2, In—l) .
1

Now the integral (5.5) becomes

A
/ / / én 1,6 a yl jn,l(h))'
Z UN\Ho JFy_ o JX 1y r I g

(5.6 ¢~ (m(wi n)h, Izn-2, In—1)dZdrdh

- / /_ W (Zd™ 5 o (1)) 6 (s ), Tam—2, T )T
m(Zn_1)Un\H, X(n,0)

In——2
0 1
Here dyp ¢ = ¢n_1,60n_14 = ‘12(€—n)+3 - Rewrite (5.6)
1 0
N In—‘z
as (¢ defined as before)
(5.7)
/ | W (o)) )y
M(Zn-1)Un\Hy, J X (5 )

1

Jon_s, In_l)dfdh.
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Factor integration through {m (I""l ‘17') } in case n — 1 is even and through

Y

In, O 21
1 0
L 4
ﬁ 0 -2 0 [1 0 2
0 0 2z 10
L \0 0 0 In_2/ |
in case n — 1 is odd. Let
( Vo, n odd,
( Ino 0 21 )
1 0
vin) — 1
n Zp1)Un , .
M(Zn-1)Un 4 0 % 0 (107 >, n even
0 0 22 10
X L 0 0 0 In—z )

Then (5.7) becomes

W (2™ 4 o( /
K/é")\ﬂn ~/7(-(n,z) (:E me d ’t( )) F,

(5.8) (I"—l Z) ,I,,_l) D (2,1 )d2dzdh.

Fy(mwih) m(ws )3 w0
1

1

Now we are ready to apply Shahidi’s functional equation. We get (interpretation
and notation as before)

y(rx 7,8 =(,9)
7(7-, A2a 2(3 - C) - 17 1/’)

e . - —— "_1 —
/V(")\H /)? W(Edz,zljn,t(h)) /F ) F&(m(wl,}l)(m(wly")h)wn aw1,111
n n {n,0) n-

(5.9) (1 t ) (In—l n_l) y 1) - 9(t1)dtdzdh.
In-l ('—1)
The last integral converges absolutely in the domain D" of the form

—Re(¢) + B <Re(s) < Re(() + A4,
Re(s) S Cy
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where A, B, C are constants which depend on 7,7 and p (4,C <« 0; B > 0). In
the last domain (5.9) equals

— 1 t
W (@d" 3 G e(h / 7im w-;< )
/‘/'Sn)\H" j{—(n‘l) ( K4 )) Fn ¢ 1, In—l

(5.10) S hen T Iy, Is 1) (t1 ) dtdTdh.
Here
In-2
0 0 0 1
b = 0 0 -1 0
2= 0 -1 0 0
1 0 0 0O
In—2
‘We have
(5.11)

1 t wn—l 1 t A
o (CHQUNES S E U
n—1
Il—n
Using (5.11), (5.10) becomes
(5.12) / | W e () Fy (m(wi 25 W Iy, Ly ) dzdh.
T\Hy S X(q0) '
In case n — 1 is even, V! = ZY_,U,, where
v 1
Zn_l—{m( z) lzeZn_l}.

In case n — 1 is odd, V;* is obtained from V,S") by “deleting” the coordinates
a,b,cin

1 a 00 0 0 ¢ O 0
In.s 0 0 0 00 O 0
1 0 0 00 0 -

1 0 00 0 0

I¢msr 00 0 0

10 0 -b

1 0 0

In—3 a

1

Now we want to “prepare” (5.12) for the application of the functional equation
for m x pu. We check that h — Fé(m(wl"i)dg‘lhw:_l, I, I, 1) is left-invariant
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1 A
dz,_el (y In—l I ) dz,—elv
£—n

n—1

under

w'll
which is equal to [(5;‘;1 jn,g< (; I > )55’_1} . Thus, factoring integra-
n—1
tion in (5.12) through the last subgroup (call it Y) gives
A
1

/; ﬁ / W( Yy I fdz;l]n,l(h))
YVINH: S X (n,0y JE™1 Iy,

- Fy(m(wy )83~ hen | I, 1) dydzdh

¢

¢ 1
=/_ /_ / /_ W<le1,e ( t—l) Ty
TYVP\H, V X(n_1,e-1y Y F* I X (1,0 1

dz,?jn,ew)) p(e)lejtes
(5.13) Fy(m(wi)0n ™ I, In_y)dT1d*tdTdh.

T ={m (t In_1> e ).

Apply the functional equation for m X g on the inner dZ;d*t integral in (5.13).
We get

Here

7(7r><T',S—C,¢)V(ﬂxu,s+4,¢) _
(1, A2,2(s - ¢) — 1,9) AW, py) =

A — t
/_ /__ / L W(¢1,e$1]1,e ( -1 ) a1e
TYVP\Hy VX (o113 VF* IV X(1,0)

1

T2 dﬁ,_eljn,t(h)) pT ()l e+0
1

(5.14) Fy(m(wy )03 W, Ly, Iy )dz1d* tdTadh.

The integral (5.14) converges in a domain D" of the form (3.21). We continue
in D', The integral in (5.14) then equals (unfolding the d*t integration back in)

1
/_ /_ /_ W(El 3 523-"!(53—1]1)) F¢3
YVA\H, I X (nor,e-1) 4 X1, 1
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n—1
(5.15) (m(w;;)ag—lhwu ,I,,,In_l)di;ldigdh.

Here

1,001 ¢dn ¢ = Jn£(63),

0 1
—in-3
0 -1
1
63 = 1
-1 0
—in-3
1 0
and
1
G101 =04 = P
1

Let us separate at this point the cases n — 1 even and n — 1 odd. Assume that

n — 1 is even. Note that 64 conjugates jn,g< (1 ) to
Y In—l

1 y 0

- In—l 0 Y
In,e In—l y

1

1
and that we may write Z; - Ta in the form Tj, e(m 1 ),
1 ’ y In—l

where T € —X(n,g). Thus (5.15) becomes

(5.16) / [ W @Bai B By (m(wih)hs I, o ) dd
Z)_JU\Hp 4 X (a1
1
where U}, is the conjugate of U, by Inn_o . In (5.16) change h — h*~,
1
to obtain
(5.17)

/_ w (a,,ﬁj,,,,(ég)h)a,,,l) F; (m(w;;)h“", I, I,,_l) dzdh.
(Z,\./_1Ur’z)u"\Hn X(n,l)
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Here

Change h — d5h in (5.17) to get

J

/ W (én 6T e(h)an,e) g (miwi2)dsh, In, Lo | dzdh
WUn\Hp VT, ¢y

-[ o | W (ensminathion)

X (n.0)

A\
n—

- —1 Wn
F, m( " )h )I'mb:;—- dzdh = /
M(¢)( 1 ) ! ZY_ Un\Hua I X (n,0)

w (én,,zjn,g(h)an,,)FM(¢) (hwn, ( 1 e ) Wi, Iﬂ_l)dfdh

A — 1
= / [ W(Cn,tzjn,l(h)anyf) / FM(¢) (hwn ( —b* )
Va\Hn 4 X(n,0) L. ol

Win (I"O“‘ f ) ,In_1> -p(2n—1)dzdTdh

=/ /___ W(én,t—ijn,l(h)an,l)/
Va\Hn JX (a0 Fr-t

I, .
Fug) (hw",uh,n ( 0 ! i) b,,,In_l) - Y(2n—1)d2dTdh

= A(W,p,).

Assume that n — 1 is odd. Change in (5.15) h — d3h. Note that 6205 = Js.
We get

1
/__ ‘/_ [ W(fl T jn,((h))-
YVr)s\Hy I X(n-1,0-1) ' X (1,0 1

(5.18) Fj(m(w;?)dshe, I, I )dZ1dTadh.
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1
Write 7, - ( T ) in the form T - a, where T € X, ) and
1

83

3

]

w

[
-0 OO
=
[%)

a = jﬂ,l

—_o oo
[ = I e i e I e i e

Note that h — F:,;(m(wl—’}l)&h“",In, I,_1) is left invariant under a. We get

J.

n—1

1
(where U,_; = { ( U ) \(u € Un—l})
1

W (Zin (1)) Faaca) ((m(w;,ﬁ)&s)“" B, I, b,y ) dzdh

_ | W(Ehn e (W) Fy(m(wy )5k, I, In_1)dTdh
Un—l\Hn X(n,l) '

/Zx_lﬁn-1\Hn Xn,0y

(note that (m(w7,)8)“" =m (1 ~Ih ))

. 1
- / ~ /_ W(xan,dh))FMw(h,( I )wl,n,fnq)dm
Z,Y_lUn—l\Hn X(n,l) n—1

. I_ .
~[ [ w@inw [ FM<¢)(h,w1,,,( lj)bn,zn_l)
Vn\Hn X(n,l) Frn-t
P(2n—1)d2dTddh = A(W, p4).

This completes the proof of Theorem 2. ]

6. Justifications

We bring here the technical justifications of the formal manipulations performed
in Section 3 (absolute convergence of integrals in certain domains and special
substitutions). Those needed for Section 4 are easy repetitions of those of Section
3 and those needed for Section 5 are similar in nature (and easier) so we omit
them.
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a. PrRoOOF oF LEMMA 3.1. We have to show the absolute convergence of the
integral (3.2) in a domain of the form (3.3).
Using the Iwasawa decomposition, it is enough to consider

axto—1/A L., 2
[ W@ [, [ 1ot (" 7)
(6.1) Tign (&), Iy o, I,,_l)ldzdfda.

Here §; is the modular function with respect to the Borel subgroup of G,.
Conjugating i¢, (@) to the left, we get (changing variables in T and in z)

[ W@ @naeca <o [ [ gm0 7))
(6.2) Z, Ipn-2, (a I ))Idzdfda.

Here s’ = Re(s) and ¢’ = Re({). It is enough to replace the dz-integration
over 7(_(2"‘) by that over the full lower Siegel radical, and show convergence.
Conjugating by m(w,) and replace ¢ by its right m(w, ) translate, we now
consider

axfg—17a o ¢ (1=n 1 .
[ W @laear=somn [ glm(l ) YaG)
Al UnXFn—l Z n—1

(6.3) Ion_s, (a I,) ) |dzdzda.

Write the following Iwasawa decompositions:

1
1 *
CL)-Col e
() = vytzka,
where k, € GL,(0), k; € H,(0), vy € V,, and
b, = diag(bs,...,bn_1), t; = diag(ti,. cor byt Cotrh.

Denote
[z] = max{1,|z| }, [2] =max{l,|z2|},
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where | | denotes the sup-norm. We have seen in [S1], Sect. 11.15 that
. ts .
(6.0 o < | <o, =1 ne
i1
(6.5) )<t ta] < 2]7Y,
(6.6) [t1]™! = [z1],
(6.7) |b; - ... - b} = max{1,|z],...,|2a]}, 122
where
o 2
L2
I n

Note that, from (6.7),

(6.8) 27 < bl <[2], i>2,
(6.9) el = lba - ba| TH =[]

By (6.9) and (2.4), the inner dz-integration of (6.3) equals
6100 [ [ G am). e (] ) b)ldsds
Fn-—l n T
where |u(t)] = |t|*'. By (2.4), (6.5), (6.6), the integral (6.10) is majorized by

/ / ([2]{zl])_P-’_2<’__n/2[x]._No(€l_<r+(n_3)/2)
Fn—l Un

(6.11) 1¢(k,m(k,),12,,_2, (“ Ir) b,t$> \dzdz.

Here Ng=1ifs'~{'+(n—-3)/2>0,and Ny=nif s —{'+(n—-3)/2< 0. As
in [S1], Sect. 4.4, we may majorize |¢p(kzm(k,), I2n—2,t)| by a linear combination
with positive coefficients of positive quasi-characters n(t). Here ¢ is diagonal. By
(6.4), (6.6), (6.8), we may consider, instead of (6.11),

(6.12) n(a) / [ma])~H ~2 2]~ Nols' =€+ =3/ N [ ]M g

where M, N are positive and depend on 7' only. For the dz-integration to
converge in (6.12), we must have

(6.13) -y —2¢ - %n +M< -M
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where M’ is large enough. In particular, —p' — 2¢' — 1n < 0, and since [z, > 1,
(6.12) is majorized by a constant multiple of

o s
For the dz-integration to converge, we must have
’ y, n—3 '
(6.14) ~No(s' = ¢'+ T) +N<-N
where N’ is large enough. Returning to (6.3), it remains to consider

(W (@157 @n(a)] detal” ¢ +0-m+20/2g,
JA,

Using the estimate in [S1], Sect. 2.3, the last integral converges in a domain of
the form

(6.15) s —¢ >N"

where N depends on 7 and 7. Gathering the conditions (6.13)—(6.15) gives a
domain of the form (3.3), and this concludes the proof of Lemma 3.1. |

b. PrROOF oF LEMMA 3.3. It is clear that it is enough to establish the absolute
convergence of (3.8) in the domain (3.7). Using the Iwasawa decomposition, it is
enough to consider

/. W@ @ Ln ], |$(m<w1,n (I : ))

(6.16) Z8enten(8), Ion—2, In—1)|d(2, T, a).

Since d¢,, and i¢,n (@) commute, we may replace 5 by its right 8y, translate, and
then consider (6.16) with 8, , omitted. Now (6.16) looks exactly like (6.1), with ¢
replaced by 5 Note that ;5 lies in the space of Indgf (Ms4¢ ® pri —(s—¢))- Now we
repeat word for word the proof in 6.a, and get that the integral (3.6) converges
absolutely in a domain of the form (3.7). |

c. PROOF OF LEMMA 3.4. We have to compute A(W,¢4) and B(W,yy) for
special substitutions. Let ¢o have support in RV, where V is a small neigh-
bourhood of I,. By this we mean that

(6.17) do(h,h',b) =0, h¢&R\V, h' € Hy_y, b€ GL,_1(F).
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Assume also that ¢g is constant on V. Thus

*
$o ho  + | kb = u(@) |zl TR go(Tn, KRG, b), vEV

(6.18) = p(@)le] R (W ki, ),
where ¢’ lies in the space of p; s_¢ = Indg:::(F) Te—¢- 1t follows from (6.17),
(6.18) that

(6.19) o5 (h,h',b) =0, h¢RV,

Tk * \
¢y ( hy | o,h,b) = p(a)|zlttne
x

(6.20) M (w1, ') (B RY)“n 71,55, _1b"), veEV.

Now let us take ¢ such that its right translate by m{w; »)Be.r is dg, and use (3.4)
to compute A(W, 4). Choose V of the form Hy, N (Ian + M2n(PN)) (N large

1 1
enough). Then | v Izp_2 € RV is equivalent to | v Ig,_o evV.
* v 1 * v 1

This shows that

621) AW =a| W) [, #@ien-r(s). Tnoi)al@)dsdg
Ne\Ge xn-n

where a is the measure of the intersection of V and the unipotent radical of R;.
Similarly, by (6.19), (6.20), we compute B(W, ¢4) from (3.6) and get

BWed=a | wa) [,
NG x(4m-n

(6.22) M(wn-1,¢") ((Tae,n_lie,n_l(g)) i bZ,n_l) p$O" (@) dzdg.

The integrals (6.22) and (6.21) (as meromorphic functions) are proportional by

the factor 7(T7(X§<2T('ss_}<)’l/’1) 77> by the local functional equation for m and 7 on

Gy x GLn_l(F). |

d. ProoFr oF LEMMA 3.6. Note that

= ((mo =
(6.23) F¢ (( ma) h,m,r) = F¢(h, mmg,T),
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(6.24)
By (1 (1 5) mar) = el 4o oo+ 2, )

for b € GL,—1(F), z € F*. Using the Iwasawa decomposition in (3.12), it is
enough to take g = & € A, and omit Sen. Conjugating T — ign(8)Tiea(a™1),
using (6.23), (6.24), and changing variable in ¢ (in (3.12)), we obtain

/ |W & |5 lalI23+y —n- 1|det al—s+§+(2£+1-—n)/2

I,
t
F;| &, wy ( ) 1)1 ,
/X“ m) /F'n 1| ( 1 I, (-1 Ir—l)

az
(6.25) o ) |d(t, z,a).
ag
Ir+1

We will determine convergence of the integral obtained from (6.25) by replacing
X*™ with the full radical U.,. (This, of course, will imply convergence of (6.25).)
Thus (after simple conjugations, and replacing Fq; by a translate by a Weyl
element), we may consider

W (@)|672(8) a1 |?* *# ~"~1| det o|~* +¢ +(EF1-m)/2 /

A, UpxFn-1
az
(6.26) |F; | u(z) Iy ‘d(z z,a).
. ¢ ) z 1 at k] b4
Ir-i—l
Write the Iwasawa decomposition
1 *
I, E .
< z 1) - ( 0 e) 1 kx

1
where ¢, = diag(cy, ..., cnp—1) and k; € GL,(0O). Note that
[2) = max{1,| z| } = |e| = | detc, |~ .

In general,

leicig1 * -« - cn1€| = max{1,|z1}, |22, ..., |2i-1}
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and hence

max{l, |zl|, ceey |z,-_1}

6.27 2171 < |e;i| =
(6.27) 7 < lal = S al o a

< [2].
Using (6.23), (6.24), and conjugating %(z) by m(k,), (6.26) becomes

/ ‘W(&)*ézl(&)lal‘28,+‘u“n—1%det al—s'+(’+(2£+1—-n)/2
Aq

/U x Fn— 1[z]2s +u T 1 (u(z) (kz))Iﬂ7

a2
(6.28) i e )ld{z, z,a).
ag
Ir+1

Now write the Iwasawa decomposition of %(z) as in 6.1 (with the same notation)
and recall (6.4)-(6.6). Using (6.23), (6.24), we see, as in 6.a, that it suffices to
consider instead of (6.28)

/ IW & la |2.s +4' —-n— 1! det al—s '+¢'+(28+1-n)/2
/[z]2s +4! +n—1| det(t)ls'+(’+#’—(n+1)/2 b tn_1|—28'+p’+n+1
Qg
(6.29) F; (Iz,,,I,,, c,tm> (2,z,a).
as
Ir+1

Now majorize |27‘;;(Izn, I.,7)| by a gauge on GL,_,(F') (see [S1], Sect. 2.3). Thus,
for the dz-integration in (6.29), we have to require

(6.30) s’ < =M

where My > 0 (depending on 7' and u). We may take M; large enough, so that
for s asin (6.30), —2s' — ' +n+1 > 0. It is easy to see that |t1,...,t,_1| < 1, and

hence [t; - ... tp_1|~2~#'+7+1 < 1. The da-integrations will require conditions
of the form

(6.31) &+ ¢ > M

and

—S’+C} > My
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where My, M3 > 0 and depend on =, pu, 7. We may take M, so large that
§+¢ +4 —~(n+1)/2 >0, and then, since |det(t)| < [z]7?, the di-integration
is majorized by

/ (] (e = 1/2) g

which converges due to (6.31). The conditions (6.29)-(6.31) give a domain of the
form (3.14). |

e. PrROOF OF LEMMA 3.7. We have to compute the integrals in both sides
of (3.12) for a special substitution as we did in Sect. 6.c. We make the same
substitutions as we did in [S1], Prop. 6.2 (for W and for Fj replacing {-,). We
get that B(W, p4) (we use the form (3.9)) equals

(6.32) ¢ /F F$(Izn,w1,n<1"-1 i),In_l)zp(zn_l)dz
n—1

(the constant c is a measure of a unipotent group close to Iz,). The same
substitution to the r.h.s. of (3.12) gives
(6.33)

~ (1t Iopy .
C/F"-IFJ I2n,'w1’n< In—l) (-1)n

(with the same constant c). The proportionality factor between (6.32) and (6.33)
is the local coefficient cy (Ks+¢+(n-1)/2 X (') (5_¢)4n/2)* 1

] In—l) ¢(t1)dt
Ir—l

f. PrROOF OF LEMMA 3.10. Since all manipulations in the proof of Lemma
3.11 and those leading to (3.33) and (3.34) are formal, i.e. consist of variable
changes and integration collapsing, it is enough to establish a domain of absolute
convergence of (3.33) and (3.34), which define AW, ©¢). Thus it remains to
apply Lemma 3.1, with (—(, —s) replacing (¢, s). ]
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